Math, asked by krishna40040, 1 year ago

find the roots of the quadratic equation 5 x square minus 2 root 10 x + 2 is equal to zero

Answers

Answered by sundarr2
4

Answer:

5 x^2 - 2 root 10 x + 2 = 0

x = - b + / - root b square - 4 ac / 2a ....

on solving this v get x = 2 by root 10....































































Step-by-step explanation:


Answered by aburaihana123
0

The roots are \frac{\sqrt{2} }{\sqrt{5} }  and \frac{\sqrt{2} }{\sqrt{5} }

Step-by-step explanation:

Given: The equation is 5x^{2}  - 2\sqrt{10} x + 2 = 0

To find: Roots of the equation

Solution:

5x^{2}  - 2\sqrt{10} x + 2 = 0

D = b^{2}  - 4ac

= (-2\sqrt{10} )^{2}  - 4 (5)(2)

= 40 - 40

= 0

x = (-b ± D)/2a

= [(-2√10±√0]/ 10

= \frac{2\sqrt{10} }{10}

= \frac{1\sqrt{10} }{5}

=\frac{\sqrt{10} \sqrt{5} }{5\sqrt{5} }

= \frac{\sqrt{50} }{5\sqrt{5} }

= \frac{\sqrt{25}\sqrt{2}  }{5\sqrt{5} }

= \frac{5\sqrt{2} }{5\sqrt{5} }

=\frac{\sqrt{2} }{\sqrt{5} }

Final answer:

Therefore the roots are \frac{\sqrt{2} }{\sqrt{5} }  and \frac{\sqrt{2} }{\sqrt{5} }

#SPJ3

Similar questions