Math, asked by aneeshyamohan, 1 year ago

find the roots of the quadratic equation a square B Square X square + b square x minus A square x - 1 = 0 using factorization method​

Answers

Answered by MaheswariS
9

\underline{\textbf{Given:}}

\mathsf{a^2b^2x^2+b^2x-a^2x-1=0}

\underline{\textbf{To find:}}

\textsf{Factors of}

\mathsf{a^2b^2x^2+b^2x-a^2x-1=0}

\underline{\textbf{Solution:}}

\textsf{Consider }

\mathsf{a^2b^2x^2+b^2x-a^2x-1=0}

\implies\mathsf{b^2x(a^2x+1)-1(a^2x+1)=0}

\implies\mathsf{(b^2x-1)\;(a^2x+1)=0}

\implies\mathsf{b^2x-1=0\;\;(or)\;\;a^2x+1=0}

\implies\mathsf{x=\dfrac{1}{b^2}\;\;(or)\;\;x=\dfrac{-1}{a^2}}

\therefore\textsf{The roots are}\;\;\mathsf{\dfrac{1}{b^2},\;\dfrac{-1}{a^2}}

Similar questions