Math, asked by ahmarthepsycho320, 1 year ago

Find the roots of the quadratic equation a²x²-3abx+2b²=0 but the method of completing the square

Answers

Answered by rohitmalik987789
3

this is your answer. check it

Attachments:
Answered by VelvetBlush
6

Given : \sf{ {a}^{2}  {x}^{2}  - 3abx +  {2b}^{2}  = 0}

➡️ \sf{{x}^{2}  -  \frac{3b}{a} x +  \frac{ {2b}^{2} }{ {a}^{2} }  = 0}

➡️\sf{ {x}^{2}  -  \frac{3b}{a} x =  -  \frac{ {2b}^{2} }{ {a}^{2} } }

➡️\sf{ {x}^{2}  - 2( \frac{3b}{2a} )x +  {( \frac{3b}{2a} )}^{2}  =  {( \frac{3b}{2a} )}^{2}  -  \frac{ {2b}^{2} }{ {a}^{2} }}

➡️\sf{ {(x -  \frac{3b}{2a}) }^{2}  =  \frac{ {9b}^{2} }{ {4a}^{2} }  -  \frac{ {2b}^{2} }{ {a}^{2} }  =  \frac{ {9b}^{2}  -  {8b}^{2} }{ {4a}^{2} }  =  \frac{ {b}^{2} }{ {4a}^{2} } }

➡️\sf{x -  \frac{3b}{2a}  =  +  \frac{b}{2a}  = x =  \frac{3b}{2a}  +  \frac{b}{2a}}

➡️\sf{x =  \frac{3b + b}{2a}  \: or \: x =  \frac{3b - b}{2a}}

➡️\sf{x =  \frac{2b}{a}  \: or \: x =  \frac{b}{a}}

Hence, the roots of the given equation are \sf{\frac{2b}{a}and\frac{b}{a}}

Similar questions