Math, asked by SHASHIDHARAN, 5 months ago

find the roots of the quadratic equation by applying the quadratic formula :- (i) x/x+1 + x+1/x = 34/ 15 , x is not equal to -1,0​

Answers

Answered by ITZBFF
21

 \mathsf{ \frac{x}{x + 1}  +  \frac{x + 1}{x}  =  \frac{34}{15} } \\  \\  \mathsf{ \frac{ {x}^{2} +  {(x + 1)}^{2}  }{x(x + 1)}  =  \frac{34}{15} } \\  \\  \mathsf{ \frac{ {x}^{2}  +  {x}^{2}  + 2x + 1}{ {x}^{2} + x }  =  \frac{34}{15} } \\  \\  \mathsf{15( 2{x}^{2} + 2x + 1) = 34( {x}^{2}  + x )} \\  \\  \mathsf{30 {x}^{2} + 30x + 15 =  34 {x}^{2}  + 34x} \\  \\  \mathsf{34 {x}^{2}  - 30 {x}^{2} + 34x - 30x - 15 = 0 } \\  \\  \mathsf{4 {x}^{2}  + 4x - 15 = 0} \\  \\  \mathsf \red{solving \: by \: using \: quadratic \: formula \:  : } \\  \\  \boxed{ \mathsf \blue{x \:  =  \:  \frac{ - b \:  \pm \:  \sqrt{ {b}^{2} - 4ac }  }{2a} }} \\  \\  \mathsf{here \:  \:  \:  \: a \:  =  \: 4 \:  \:  \:  \:  \: b \:  =  \: 4 \:  \:  \:  \:  \: c \:  =  \:  - 15} \\  \\  \mathsf{x =  \frac{ - (4) \:  \pm \:  \sqrt{ {4}^{2} - 4(4)( - 15) } }{2 \times 4} } \\  \\  \mathsf{x =  \frac{ - 4 \:  \pm \:  \sqrt{16 + 240} }{8} } \\   \\ \mathsf{x =  \frac{ - 4 \:  \pm \:  \sqrt{256} }{8} } \\  \\  \mathsf{x =  \frac{ - 4 \:  \pm \: 16}{8} } \\  \\  \mathsf{x =  \frac{ - 4 + 16}{8} \:  ; \:  \frac{ - 4 - 16}{8} } \\  \\  \mathsf{x =  \frac{12}{8}  \: ; \:  \frac{ - 20}{8} } \\  \\  \mathsf{x \: = \: \frac{3}{2} \: ; \: \frac{-5}{2}}\\ \\ \boxed{\mathsf{ \therefore \: roots \: are \:  \:  \: x =  \frac{3}{2}  \:; \:  \frac{ - 5}{2}  }}

 \\ {\tt{\fcolorbox{black}{pink}{© ITZBFF}}}

Similar questions