Math, asked by stXt, 9 months ago

Find the roots of the quadratic equation by splitting the middle term of √3x^2-2x-√3​

Answers

Answered by BrainlyPopularman
4

Answer:

 \sqrt{3}  {x}^{2}  - 2x -  \sqrt{3}  = 0 \\  \\  \sqrt{3}  {x}^{2}  - 2x -  \sqrt{3}  - ( -  \sqrt{3} ) =  - ( -  \sqrt{3} ) \\  \\  \sqrt{3}  {x}^{2}  - 2x =  - (  - \sqrt{3} ) \\  \\  \sqrt{3}  {x}^{2}  - 2x =  \sqrt{3}  \\  \\  \frac{ \sqrt{3}  {x}^{2} - 2x }{ \sqrt{3} }  =  \frac{ \sqrt{3} }{ \sqrt{3} }  \\  \\  {x}^{2}   + ( -  \frac{2 \sqrt{3} }{3} x) = 1 \\  \\  {x}^{2}  + ( -  \frac{2 \sqrt{3} }{3} x) +  {( \frac{ -   \sqrt{3}  }{3} )}^{2}  = 1 +  {( \frac{ -  \sqrt{3} }{3}) }^{2}  \\  \\  {x}^{2}  + ( -  \frac{2 \sqrt{3} }{ 3} x) +  \frac{1}{3}  =  \frac{4}{3}  \\  \\  \sqrt{ {(x -  \frac{ \sqrt{3} }{3} )}^{2} }  =  \sqrt{ \frac{4}{3} }  \\  \\ (x -  \frac{ \sqrt{3} }{3} ) =  \frac{2 \sqrt{3} }{3}  \:  , \: (x -  \frac{ \sqrt{3} }{3} ) =  -  \frac{2 \sqrt{3} }{3}  \\  \\ x =  \sqrt{3}  \:  , \: x =  -  \frac{1}{ \sqrt{3} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \bold{ \boxed{ \green{FOLLOW ME }}}}

Similar questions