Math, asked by likhithkumarj6, 6 months ago

find the roots of the quadratic equation
 \sqrt{ {3x }^{2} }  -  2 \sqrt{2x}  - 2 \sqrt{3}  = 0

Answers

Answered by Anonymous
19

\dag \: \underline{\sf AnsWer :} \\

  • We are given a quadratic equation as √3x² - 2√2x - 2√3 = 0 and we need to find the roots of the given quadratic equation. To find the roots the given quadratic equation we will use the method of splitting the middle term. So, let's solve :

:\implies \sf   \sqrt{3} {x}^{2}  - 2 \sqrt{2} x - 2 \sqrt{3}  = 0 \\  \\

:\implies \sf   \sqrt{3} {x}^{2}  - 3 \sqrt{2} x  +  \sqrt{2}x - 2 \sqrt{3}  = 0 \\  \\

:\implies \sf   \sqrt{3} x(x -  \sqrt{6} )  +  \sqrt{2} (x -  \sqrt{6})  = 0 \\  \\

:\implies \sf   (\sqrt{3}x+  \sqrt{2} )(x -  \sqrt{6})  = 0 \\  \\

:\implies \underline{ \boxed{ \sf x =  \frac{  - \sqrt{2} }{ \sqrt{3} }  \: or \: x =  \sqrt{6} }}  \\  \\

⠀⠀━━━━━━━━━━━━━━━━━━━

\boxed{\boxed{\begin{minipage}{6.6 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{minipage}}}

Similar questions