Math, asked by TbiaSupreme, 1 year ago

Find the roots of the quadratic equation x - 1/3x = 1/6

Answers

Answered by simran206
175
HLO MATE !!!!
Here is Ur Answer ________________
__________________________________

 =  > x -  \frac{1}{3x}  =  \frac{1}{6} \\  \\  =  >  \frac{3x {}^{2} - 1 }{3x}   =  \frac{1}{6}  \\  \\  =  > 6(3x {}^{2}  - 1) = 3x \\  \\  =  > 18x {}^{2}  - 6 = 3x \\  \\  =  > 18x {}^{2}  - 3x - 6 = 0 \\  \\  =  > 3(6x {}^{2}  - x - 2) = 0 \\  \\  =  > 6 x{}^{2}  - 4x  + 3x - 2 = 0 \\  \\  =  >2x(3x - 2) + 1(3x - 2) = 0 \\  \\  =  > (2x  + 1)(3x - 2) = 0 \\  \\ x =  \frac{ - 1}{2}  \: and \: x =  \frac{2}{3 }  \\  \\ so \: the \: roots \: are \:  \frac{ - 1}{2} and \:  \frac{2}{3}
___________________________________
HOPE IT HELPS UH ☺
^_^
Answered by Anonymous
63
Answer:

 x - \frac{1}{3x} = \frac{1}{6}

 = > \frac{ {3x}^{2} - 1}{3x} = \frac{1}{6} \\ = > 6( {3x}^{2} - 1) = 3x \\ = > {18x}^{2} - 6 = 3x \\ = > {18x}^{2} - 3x - 6 = 0 \\ = > 3( {6x}^{2} - x - 2) \\ = > {6x}^{2} - 4x + 3x - 2 = 0 \\ = > 2x(3x - 2) + (3x - 2) \\ = > (2x + 1)(3x - 2)

x = \frac{ - 1}{2 } \: and \: x = \frac{2}{3}
Similar questions