Math, asked by karthikeya6269, 1 year ago

find the roots of the quadratic equation x^2-2x+3=0 by applying formula.​


wardahd1234: easy peasy

Answers

Answered by Dcsaini1972
8

Answer:

x²- 2x + 3 = 0

a = 1. , b = -2 , c = 3

Formula => -b +- √b²- 4ac / 2a

2 + √4 - 12 / 2. || 2 - √4 - 12 / 2

2 + √8 / 2 || 2 - √8 / 2

2 + 2 √2 / 2 || 2 - 2 √2 / 2

2 ( 1 + √2 ) / 2 || 2 ( 1 - √2 ) / 2

=> x = ( 1 + √2 ) , ( 1 - √2 )

All the best for exams.....


karthikeya6269: thank you sister...
karthikeya6269: and same to you
Dcsaini1972: ??
karthikeya6269: for wishing me for exams.
karthikeya6269: y anything wrong?
Dcsaini1972: no, welcome, but I am a boy.
karthikeya6269: oh don feel bad bro
Answered by wardahd1234
5
\huge\bf\mathcal\pink{HeyDude}
Answer:
1 - \sqrt{2} ,
1 + \sqrt{2}

Step-by-Step Explanation :

Given :
 {x}^{2} - 2x + 3 = 0 \\ \\
Here,
a \: = 1 \\ b = ( - 2) \\ c = 3

d \: \: = {b}^{2} \: - 4ac \\ = ( - 2)^{2} - 4(1)(3) \\ = 4 - 12 \\ = ( - 8)

Now,

x = \frac{ - b + \sqrt{d} }{2a} \\ x = \frac{-( - 2) + \sqrt{-8} }{2(1)} \\ x = \frac{ 2 + (-\sqrt[2]{2}{ } )}{2} \\ x = 1 - \sqrt{2}

x = \frac{ - b - \sqrt{d} }{2a} \\ x = \frac{-( - 2) - \sqrt{-8} }{2(1)} \\ x = \frac{ 2 - (-\sqrt[2]{2}{ }) }{2} \\ <br />x = 1 + \sqrt{2}
 \huge \bold \blue {Thanks..!}

&lt;marquee behaviour = move bgcolor = cyan&gt;<br />Mark as brainliest if helpful. <br />Follow me! <br /><br />&lt;/marquee&gt;
Similar questions