Math, asked by sateesh10092004, 4 months ago

find the roots of the quadratic equation x2+4x+5=0 by using quadratic formula​

Answers

Answered by vanshikavikal448
187

 \huge{ \underline{ \underline{ \bold{required \: answer}}}}

we have,

 {x}^{2}  + 4x + 5 = 0

it's a quadratic equation..so it is in the form of

 {ax}^{2}  + bx + c = 0 \:  \:(a ≠ 0)

here,

  • a = 1
  • b = 4
  • c = 5

quadratic formula;

x =   \frac{  - b \:  ±  \sqrt{D }}{2a}    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\   \\  { \tt here } \:D { \tt\: is \: discriminant \: of \: the \: equation } \\  \\   { \tt \: and} \:  \: D =  {b}^{2}  - 4ac \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

now, Let D be the discriminant of the equation x² + 4x + 5

Then,

D =  {b}^{2}  - 4ac \:  \:\\  \\  \implies D =  {(4)}^{2}  - 4 \times 1 \times 5 \\  \\  \implies D = 16 - 20 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \implies D =  - 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

_________________________

★ first we have to know some things about roots of a quadratic equation:

☞︎︎︎ The quadratic equation ax² + bx + c = 0 , a ≠ 0 has;

  1. two distinct real roots, if D = b²- 4ac > 0
  2. two equal roots i.e. coincident real roots, if D = b² - 4ac = 0
  3. no real roots, if D = b² - 4ac < 0

__________________________

and here, D = - 4

➪ D < 0

hence, the given quadratic equation has no real roots

Similar questions