Math, asked by rahizrahi, 1 month ago

find the roots of the quadratic equations 2x²+x-4=0.

Answers

Answered by kiranveerkaur40
1

Answer:

2x

2

+x−4=0

Compairing with ax

2

+bx+c=0

a = 2 b = 1 c = -4

2a

−b±

b

2

−4ac

=

2×2

−1±

1

2

−4×2(−4)

4

−1±

33

∴x=

4

−1+

33

OR x=

4

−1−

33

this is your answer

hope you are satisfied

pls mark me brainlist

Answered by xSoyaibImtiazAhmedx
1

Given quadratic equation ,

* 2x² + x - 4 = 0

~ Comparing this equation to ax² + bx + c = 0 , a≠0 , we get ,

  • a = 2
  • b = 1
  • c = -4

{ Now we are going to find the roots by using quadratic formula }

 \large \color{red} \bold{x \:  =  \frac{ - ( - b)±  \sqrt{ {b}^{2}  - 4ca} }{2a} }

~ Substituting the values ,

 \large \color{blue} \bold{x \:  =  \frac{ - ( - 1)±  \sqrt{ {1}^{2}  - 4 \times ( - 4) \times 2} }{2 \times 2} }

 \large \color{blue} \bold{ \:  \:  \:  \:  \:   =  \frac{  1 \: ±  \sqrt{ {1}  + 32} }{4} }

\large \color{blue} \bold{ \:  \:  \:  \:  \:   =  \frac{  1 \: ±  \sqrt{ 33} }{4} }

\large \color{blue} \bold{ \:  \:  \:  \:  \:   =  \frac{  1 \:  +  \sqrt{ 33} }{4} }\large \color{blue} \bold{ \:  \:  \:  \: ,\:     \frac{  1 \:  -  \sqrt{ 33} }{4} }

★ So the roots are →

 \underbrace{\large \color{orange} \bold{ \:  \:  \:  \:  \:    \frac{  1 \:  +  \sqrt{ 33} }{4} }\large \color{green} \bold{ \:  \:  \:  \: and \:  \:  \: \:      \color{indigo}{\frac{  1 \:  -  \sqrt{ 33} }{4} }}}

Similar questions