Math, asked by lvkailasmi, 8 months ago

Find the roots of the quadratic equations by using the quadratic formula method: -x^2 + 7x-10 = 0

Answers

Answered by InfiniteSoul
2

\sf{\underline{\boxed{\green{\large{\bold{ Question}}}}}}

  • solve the equation using formulae \sf x^2 + 7x - 10 = 0

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}}

\sf\implies x^2 + 7x - 10= 0

⠀⠀⠀⠀⠀⠀⠀

  • compare the eq with \sf{\underline{\bold{ax^2 + bx + c = 0 }}}

⠀⠀⠀⠀⠀⠀⠀

☯ a = 1

☯ b = 7

☯ c = -10

⠀⠀⠀⠀⠀⠀⠀

now :-

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{x =  \dfrac{ - b \pm \sqrt D }{2a }}}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{ D =  b^2 - 4ac }}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • finding value of D.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies D = b^2 - 4ac

\sf\implies D = (7)^2 - 4 \times 1 \times -10

\sf\implies D = 49 + 40

\sf\implies D = 89

\sf{\underline{\boxed{\blue{\large{\bold{ D = 89}}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • putting values in the eq.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies x = \dfrac{ - b \pm\sqrt D }{2a}

\sf\implies x = \dfrac{ -( 7 )  \pm\sqrt {89} }{2\times 1 }

\sf\implies x = \dfrac{ 7 \pm \sqrt{89} }{2}

⠀⠀⠀⠀⠀⠀⠀

 \sf x = \dfrac{ 7 + \sqrt{89}}{ 2 }

\sf{\underline{\boxed{\purple{\large{\bold{ x = \dfrac{ 7 + \sqrt{89}}{2} }}}}}}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

⠀✒ \sf x = \dfrac{ 7 - \sqrt{89}}{ 2 }

\sf{\underline{\boxed{\purple{\large{\bold{ x = \dfrac{ 7 - \sqrt{89}}{2} }}}}}}

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\purple{\large{\bold{ x = \dfrac{7 - \sqrt{89}}{2} \: or \: \dfrac{ 7 +\sqrt{89}}{2}}}}}}}

Similar questions