Math, asked by anindyaadhikari13, 3 months ago

Find the roots of this equation by factorisation.
⟹ x³ + x + 2 = 0​

Answers

Answered by Anonymous
9

Step-by-step explanation:

 {x}^{3}  + x + 2 = 0 \\  \\  =  >   {x}^{3} +  {x}^{2} -  {x}^{2}  - x  + 2x + 2 = 0 \\  \\  =  > {x}^{2}  (x + 1) - x(x + 1) + 2(x + 1) = 0 \\  \\  =  > (x + 1)( {x}^{2}  - x + 2) = 0 \\  \\  =  > x + 1 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  =  > x =  - 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  =  >  {x}^{2}  - x + 2 = 0 \\  \\  =  > x(x - 1) =  - 2 \\  \\  =  > x =  - 2 \\  \\  =  > x - 1 =  - 2 \\  \\  =  > x =  - 1 \\  \\  \\ x =  - 1 \:  \:  \:  \: and \:  \:  \:  \:  - 2


SujalSirimilla: I have a different approach to this question but sadly there are no slots left to answer.
RockingStarPratheek: Hi @SujalSirimilla, Happy to know that you are having a different approach for the Given Question ! Since there is no slot left, You can give your answer is Comment section which is present just below the Question. By Providing your answer in Comment Section, The Questioner get's alternate method! Thank You
RockingStarPratheek: https://prnt.sc/xldnfr => Kindly view this Image to know where to comment !
SujalSirimilla: Sure :). Also, @anitagarai, your answer is ALMOST correct. the factorisation of x^2-x+2=0 is wrong. If you cant factorise it, use the quadratic formula.
Anonymous: you can delete my answer . and you can answer this question
Anonymous: because my answer is wrong
SujalSirimilla: NO please edit your answer. Just edit your answer by asking moderator and do the factorisation of x^2-x+2=0 correctly.
anindyaadhikari13: It can be factorised easily, x³ + x + 2 = x³ + 1 + x + 1,factorise x³ + 1 by using identity and take x + 1 as common from there.
RockingStarPratheek: Yes, Correct ✔️
SujalSirimilla: He has factorised x³ + x + 2 into (x + 1)(x^2 - x + 2). Now, factorise x^2-x+2=0 correctly. You will get (1 ± i√7)/2.
Answered by RockingStarPratheek
69

\sf{x^3+x+2=0}

Use the Rational Root Theorem (Rational Root Theorem : For a polynomial equation with integer coefficients \sf{a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}} . If \sf{a_0} and \sf{a_n} are integers. Then if there is a rational solution it could be found by checking all the numbers produced for ± Dividers of \sf{a_0} ÷ Dividers of \sf{a_n})

  • Here, \sf{a_0} = 24 and \sf{a_n} = 1
  • The Dividers of \sf{a_0 : 1,2}
  • The Dividers of \sf{a_n:1}

Therefore Check the following rational numbers \sf{\pm \dfrac{1,\:2}{1}}

  • -1/1 is a root of the expression, so factor out x + 1

\to\sf{\displaystyle\left(x+1\right)\frac{x^3+x+2}{x+1}}

\to\sf{\displaystyle\left(x+1\right)\left(x^2+\frac{-x^2+x+2}{x+1}\right)}

\to\sf{\displaystyle\left(x+1\right)\left(x^2-x+\frac{2x+2}{x+1}\right)}

\to\sf{\displaystyle\left(x+1\right)\left(x^2-x+2\right)}

Use Zero Factor Principle

  • The Principle of Zero Products states that if the product of two numbers is 0, If ab = 0 then a = 0 or b = 0

\boxed{\sf{x+1=0\quad \mathrm{or}\quad \:x^2-x+2=0}}

---\longrightarrow Solve x + 1 = 0

\bigstar\:\:\:\:\sf{x+1=0}\quad\implies\sf{x+1-1=0-1}\quad\implies\underline{\underline{\sf{x=-1}}}

---\longrightarrow Solve x² - x + 2 = 0

We can Solve it with Quadratic Formula || Quadratic Equation Formula : For a Quadratic Equation of the form \sf{ax^2+bx+c=0} the solutions are \sf{x_{1,\:2}=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}}

  • We have \sf{a = 1, b = -1, c = 2}

\to\rm{\displaystyle x_{1,\:2}=\frac{-\left(-1\right)\pm \sqrt{\left(-1\right)^2-4\cdot \:1\cdot \:2}}{2\cdot \:1}}

\to\rm{\displaystyle x_{1,\:2}=\frac{-\left(-1\right)\pm \sqrt{\left(-1\right)^2-4\cdot \:1\cdot \:2}}{2}}

\to\rm{\displaystyle x_{1,\:2}=\frac{-\left(-1\right)\pm \sqrt{\left(-1\right)^2-8}}{2}}

\to\rm{\displaystyle x_{1,\:2}=\frac{-\left(-1\right)\pm \sqrt{1-8}}{2}}

\to\rm{\displaystyle x_{1,\:2}=\frac{-\left(-1\right)\pm \sqrt{-7}}{2}}

  • Apply Radical Rule : \sf{\sqrt{-a}=\sqrt{-1} \sqrt{a}}

\to\rm{\displaystyle x_{1,\:2}=\frac{-\left(-1\right)\pm \sqrt{-1}\sqrt{7}}{2}}

  • Apply the Imaginary Rule : \sf{\sqrt{-1}=i}

\to\rm{\displaystyle x_{1,\:2}=\frac{-\left(-1\right)\pm \sqrt{7}i}{2}}

  • Separate The Solutions

\to\rm{\displaystyle x_1=\frac{-\left(-1\right)+\sqrt{7}i}{2\cdot \:1},\:x_2=\frac{-\left(-1\right)-\sqrt{7}i}{2\cdot \:1}}

  • The Solutions to the Quadratic Equations are

\to\rm{\displaystyle x=\frac{1}{2}+i\frac{\sqrt{7}}{2},\:x=\frac{1}{2}-i\frac{\sqrt{7}}{2}}

\rule{315}{1}

The Final Solutions Are,

\boxed{\boxed{\sf{\displaystyle x=-1,\:x=\frac{1}{2}+i\frac{\sqrt{7}}{2},\:x=\frac{1}{2}-i\frac{\sqrt{7}}{2}}}}

Attachments:

Mister360: Fabulous
Anonymous: Fantastic bro :)
RockingStarPratheek: Thankuuh Bro :)
Mysterioushine: Awesome :)
RockingStarPratheek: ❤️ Thank You Sister ❤
RockingStarPratheek: Thanks @BrainlyBlooms ❤️
RockingStarPratheek: Thankies @Mister360 Bro :)
blossomstar: Mind blowing ಠᴥಠ
Anonymous: Splendid!
MystícPhoeníx: Mind Blowing !!
Similar questions