Find the roots of x+1/x= 3.
Answers
Answered by
1
Answer:
Step-by-step explanation:
The roots are x=\frac{3+\sqrt{5}}{2},\frac{3-\sqrt{5}}{2}
Step-by-step explanation:
Given : Expression x+\frac{1}{x}=3;x\neq 0
To find : The roots of the given expression?
Solution :
We write the given expression in simpler form,
x+\frac{1}{x}=3
\frac{x^2+1}{x}=3
x^2+1=3x
x^2-3x+1=0 is the quadratic equation.
Using quadratic formula,
General form - ax^2+bx+c=0 D=b^2-4ac
Solution is x=\frac{-b\pm\sqrt{D}}{2a}
Equation is x^2-3x+1=0
where, a=1 , b=-3, c=1
D=b^2-4ac
D=(-3)^2-4(1)(1)
D=9-4
D=5
Solution is x=\frac{-b\pm\sqrt{D}}{2a}
x=\frac{-(-3)\pm\sqrt{5}}{2(1)}
x=\frac{3\pm\sqrt{5}}{2}
Therefore, The roots areGeneral form - ax^2+bx+c=0 D=b^2-4ac
Answered by
2
Step-by-step explanation:
Hey Buddy here's ur answer
Attachments:
Similar questions