Math, asked by husnaaiman143, 4 months ago

find the roots of x square - 7x + 12 = 0 by factorization method ​

Answers

Answered by Sakhtlounda2503
2

Answer:

x²-7x+12=0

x²-4x-3x+12=0. (By splitting the middle term)

x(x-4)-3(x-4)=0

(x-3)(x-4)=0

When,

x-3=0

x=3

When,

x-4=0

x=4

Mark me as brainliest!!!

Answered by Anonymous
7

Given : Quadratic equation = x² - 7x + 12

To Find : The roots of the Given Quadratic equation

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀\sf{\bf{ Solution \:of\:Question \::}}\\

⠀⠀⠀⠀⠀\longmapsto {\mathrm {Equation \: = \:x^{2} - 7x + 12 = 0}}\\

By using Sum - Product Pattern :

⠀⠀⠀⠀⠀⠀⠀⠀\longmapsto {\mathrm { \:x^{2} \purple {- 7x} + 12 = 0}}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\longmapsto {\mathrm { \:x^{2}\purple{- 4x - 3x } + 12 = 0}}\\

⠀⠀⠀⠀⠀⠀⠀⠀\longmapsto {\mathrm { \:x^{2}- 4x - 3x  + 12 = 0}}\\

Now , By Finding factor in Each term :

⠀⠀⠀⠀⠀⠀⠀⠀\longmapsto {\mathrm { \:x^{2}- 4x - 3x  + 12 = 0}}\\

Now , Taking x as Common in First term :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\longmapsto {\mathrm { \:\purple {x^{2}- 4x } - 3x  + 12 = 0}}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\longmapsto {\mathrm { \:\purple {x( x - 4)  } - 3x  + 12 = 0}}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\longmapsto {\mathrm { \:x( x - 4)   - 3x  + 12 = 0}}\\

Now , Taking -3 as Common in Second term :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\longmapsto {\mathrm { \:x( x - 4) \purple { - 3x   + 12} = 0}}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\longmapsto {\mathrm { \:x( x - 4) \purple { - 3( x   - 4 ) } = 0}}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀\longmapsto {\mathrm { \:x( x - 4)  - 3( x   - 4 )  = 0}}\\

Now , Rewrite in Factored term :

⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀\longmapsto {\mathrm { \purple {\:x( x - 4)  - 3( x   - 4 )}  = 0}}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀\longmapsto {\mathrm {\purple {\:( x - 3)  ( x   - 4 )  }= 0}}\\

As , We know that ,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\longmapsto {\mathrm { x - 3= 0}}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\underline {\boxed {\pink{\mathrm { x = 3 }}}}\\

and ,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\longmapsto {\mathrm { x - 4 = 0}}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\underline {\boxed {\pink{\mathrm { x = 4}}}}\\

\dag\:\:{\underline {\pink{\mathrm { Hence ,\: The \:roots \:of\:x^{2} - 7x + 12 = 0 \:are \:3 \:and\: 4.}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions