Math, asked by ranjan497570, 11 months ago

find the roots of x

 {x}^{2}  + x - 12

Answers

Answered by iTzMiSsTwinKle
23

\huge{\boxed{\sf{SOLUTION-}}}

It is given that,

 {x}^{2}  + x - 12

We have to solve it using the process of middle term splitting.

 {x}^{2}  + (4 - 3)x \:  - 12

 {x}^{2}  + 4x - 3x - 12

x(x + 4) - 3(x + 4)

(x + 4)(x </strong><strong>-</strong><strong> 3)

Now we will equate both the terms with zero.

(x + 4) = 0 \\ x = ( - 4)

And,

(x </strong><strong>-</strong><strong> 3) = 0 \\ x = ( 3)

Hence,

The roots of x are (-4) and (3)

Answered by Anonymous
22

Answer:

□ROOT OF X=3 AND -4

Step-by-step explanation:

your \: question \: is \: roots \: of \: x \: in \: this \: eqn \:  \\ so \: first \: we \: use \:  \\ middle \: term \: splitting \\  {x}^{2}  + x - 12 \\  {x}^{2}  + 4x - 3x - 12 \\  x(x + 4) - 3(x + 4) \\ (x - 3)(x + 4) \\ value \: of \: x = 3 \: and \:  - 4 \\  \\ second \: method \\ d =  {b}^{2}  - 4ac \\  \:  \:  \:  =  {1}^{2}  + 48 = 49 \\ x  =  \frac{ - b +  -  \sqrt{d} }{2a}  \\  \:  \:  \:  \:  =  \frac{ - 1 + 7}{2}  \:  \:  \:  \: \:  \:  \:  \:  \:  \frac{ - 1  -  7}{2} \\  \:  \:  \:  \:  =  \frac{6}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ - 8}{2}  \\ x = 3 \: and \:  - 4

Similar questions