Math, asked by vidhenpatel, 10 months ago

FIND THE ROOTS:
 \frac{1}{x + 1}  +  \frac{1}{x + 2}   =  \frac{4}{x + 4}  \\ x \: notequals \: to - 1 \:  \:  - 2 \:  \:  \:  - 4

Answers

Answered by gopika65
4

Answer:

1/x+1 + 1/x+2

= 1.499694891

4/x+4 = 0.9999389686

-1-2-4 = -7

this is the x value = -7

Answered by Anonymous
68

Question:

FIND THE ROOTS

 \frac{1}{x + 1}  +  \frac{1}{x + 2} =  \frac{4}{x + 4}  </p><p>

Answer:

 \frac{(x + 2) + (x + 1)}{(x  + 1)(x + 2)}  =  \frac{4}{x + 4}  \\  \\  \frac{2x + 3}{(x + 1)(x + 2)}  =  \frac{4}{x + 4}  \\  \\  (2x + 3)(x + 4) = 4(x + 1)(x + 2) \\  \\ 2 {x}^{2}  + 8x + 3x + 12 = 4( {x}^{2}  + 2x + x + 2) \\  \\ 2 {x}^{2}  + 8x + 3x + 12 = 4 {x}^{2}  + 8x + 4x + 2 \\  \\  - 2 {x}^{2}  - x + 10 = 0 \\  \\ 2 {x}^{2}  + x + 10 = 0 \\  \\

Use factorisation method to find the root of the equation,

2 {x}^{2}  + 5x - 4x + 10 = 0 \\  \\ x(2x + 5) - 2(2x - 5) = 0 \\  \\ (x - 2)(2x + 5) = 0

Take

x - 2 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \: 2x + 5 = 0 \\  \\ x = 2 \:  \:  \:  \:  \:  \: x =  \frac{ - 5}{2}

Hence the root of the equation is x= 2,-5/2

Similar questions