Math, asked by shikha7965, 1 year ago

Find the rotational velocity
If Centripetal Acceleration = 2019 m/s²
and Radius = 06 m

Answers

Answered by AbhijithPrakash
6

Answer:

v=3\sqrt{1346}~m/s\quad \begin{pmatrix}110.06362\dots~m/s\\396.22902\dots~km/h\end{pmatrix}

Step-by-step explanation:

\mathrm{Centripetal\:Acceleration}

  • \mathrm{For\:Rotation\:Velocity=v,\:Radius=r}
  • \mathrm{The\:Centripetal\:Acceleration\:Formula\:is:}\:a_c=\dfrac{v^2}{t}

a_c=2019

r=6

2019=\dfrac{v^2}{6}

2019=\dfrac{v^2}{6}

\mathrm{Switch\:sides}

\dfrac{v^2}{6}=2019

\mathrm{Multiply\:both\:sides\:by\:}6

\dfrac{6v^2}{6}=2019\cdot \:6

\mathrm{Simplify}

v^2=12114

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

v=\sqrt{12114},\:v=-\sqrt{12114}

\sqrt{12114}

\mathrm{Prime\:factorization\:of\:}12114

1211412114\:\mathrm{divides\:by}\:2\quad \:12114=6057\cdot \:2

=2\cdot \:6057

6057\:\mathrm{divides\:by}\:3\quad \:6057=2019\cdot \:3

=2\cdot \:3\cdot \:2019

2019\:\mathrm{divides\:by}\:3\quad \:2019=673\cdot \:3

=2\cdot \:3\cdot \:3\cdot \:673

2,\:3,\:673\mathrm{\:are\:all\:prime\:numbers,\:therefore\:no\:further\:factorization\:is\:possible}

=2\cdot \:3\cdot \:3\cdot \:673

=2\cdot \:3^2\cdot \:673

=\sqrt{3^2\cdot \:2\cdot \:673}

\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}

=\sqrt{3^2}\sqrt{2\cdot \:673}

\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a

\sqrt{3^2}=3

=3\sqrt{2\cdot \:673}

\mathrm{Refine}

=3\sqrt{1346}

\mathrm{Like\:wise\:}-\sqrt{12114}=-3\sqrt{1346}

v=3\sqrt{1346},\:v=-3\sqrt{1346}

\mathrm{Selecting\:Positive\:value}

v=3\sqrt{1346}

\mathrm{Units\:used\:for\:calculation:}\:Meters\:per\:Second

v=3\sqrt{1346}~m/s

Similar questions