Find the rule which gives the number of matchsticks required to make the following
matchstick patterns. Use a variable (literal) to write the rule.
(i) A pattern of letter T as T
(ii) A pattern of letter V as V
(iii) A pattern of letter Z as Z
(Iv) A pattern of letter F as F
Answers
Answer:
answer for the given problem is given
So,
So,For IT
So,For ITNumber for Matchsticks 2
So,For ITNumber for Matchsticks 2For 2T
So,For ITNumber for Matchsticks 2For 2TNumber for Matchsticks = 4
So,For ITNumber for Matchsticks 2For 2TNumber for Matchsticks = 4For 3T
So,For ITNumber for Matchsticks 2For 2TNumber for Matchsticks = 4For 3TNumber for Matchsticks 6
So,For ITNumber for Matchsticks 2For 2TNumber for Matchsticks = 4For 3TNumber for Matchsticks 6So, we write
So,For ITNumber for Matchsticks 2For 2TNumber for Matchsticks = 4For 3TNumber for Matchsticks 6So, we writeNumber of matchsticks = 2n
So,For ITNumber for Matchsticks 2For 2TNumber for Matchsticks = 4For 3TNumber for Matchsticks 6So, we writeNumber of matchsticks = 2nWhere n = Number of T
Letter V
Letter VMaking V using matchsticks
Letter VMaking V using matchsticksSo,
Letter VMaking V using matchsticksSo,For 1V
Letter VMaking V using matchsticksSo,For 1VNumber of matchsticks = 2