Math, asked by guptasant72, 9 months ago

Find the rule which gives the number of matchsticks required to make the following

matchstick patterns. Use a variable (literal) to write the rule.

(i) A pattern of letter T as T

(ii) A pattern of letter V as V

(iii) A pattern of letter Z as Z

(Iv) A pattern of letter F as F​

Answers

Answered by tennetiraj86
17

Answer:

answer for the given problem is given

Attachments:
Answered by Anonymous
12

So,

So,For IT

So,For ITNumber for Matchsticks 2

So,For ITNumber for Matchsticks 2For 2T

So,For ITNumber for Matchsticks 2For 2TNumber for Matchsticks = 4

So,For ITNumber for Matchsticks 2For 2TNumber for Matchsticks = 4For 3T

So,For ITNumber for Matchsticks 2For 2TNumber for Matchsticks = 4For 3TNumber for Matchsticks 6

So,For ITNumber for Matchsticks 2For 2TNumber for Matchsticks = 4For 3TNumber for Matchsticks 6So, we write

So,For ITNumber for Matchsticks 2For 2TNumber for Matchsticks = 4For 3TNumber for Matchsticks 6So, we writeNumber of matchsticks = 2n

So,For ITNumber for Matchsticks 2For 2TNumber for Matchsticks = 4For 3TNumber for Matchsticks 6So, we writeNumber of matchsticks = 2nWhere n = Number of T

 \rule{250}{6}

Letter V

Letter VMaking V using matchsticks

Letter VMaking V using matchsticksSo,

Letter VMaking V using matchsticksSo,For 1V

Letter VMaking V using matchsticksSo,For 1VNumber of matchsticks = 2

Similar questions