Math, asked by priya693792, 5 months ago

find the second derivative sin(ax+b)​

Answers

Answered by Anonymous
33

Solution :

\sf{Function\:of\:y = sin(ax + b)} \\ \\

\textsf{By applying the chain rule of differentiation and substituting the values in it,}\\\textsf{we get :-} \\ \\

\underline{\sf{Chain\:rule\: differentiation :-}} \\ \\ \sf{\dfrac{dy}{dx} = \dfrac{dy}{du}\cdot\dfrac{du}{dx}} \\ \\

\textsf{Here,} \\ \bullet\:\textsf{The value of y = sin(ax + b)} \\ \bullet\:\textsf{The value of u = (ax + b)} \\ \\

:\implies \sf{\dfrac{dy}{dx} = \dfrac{d[sin(ax + b)]}{d(ax + b)}\cdot\dfrac{d(ax + b)}{dx}} \\ \\

\textsf{Now, by using the formulas and substituting them in the equation, we get :-} \\ \\ \bullet\:\underline{\sf{Derivative\:of\:sin(x)\:is \:cos(x)}} \\ \sf{\dfrac{d[sin(x)]}{dx} = cos(x)} \\ \\ \underline{\sf{Sum\:rule\: differentiation :-}} \\ \\ \sf{\dfrac{d}{dx}[f(x) + g(x)] = \dfrac{d[f(x)]}{du} + \dfrac{d[g(x)]}{dx}} \\ \\

:\implies \sf{\dfrac{dy}{dx} = cos(ax + b)\cdot\bigg[\dfrac{d(ax)}{dx} + \dfrac{d(b)}{dx}\bigg]}\\ \\

\textsf{By applying the constant rule of differentiation and substituting the values in it,}\\\textsf{we get :-} \\ \\

\underline{\sf{Constant\:rule\: differentiation :-}} \\ \\ \sf{\dfrac{dc}{dx} = 0} \\ \\

:\implies \sf{\dfrac{dy}{dx} = cos(ax + b)\cdot(a + 0)} \\ \\

:\implies \sf{\dfrac{dy}{dx} = cos(ax + b)a} \\ \\

\boxed{\therefore \sf{\dfrac{dy}{dx} = cos(ax + b)a}} \\ \\

\textsf{Thus, the derivative of sin(ax + b) is cos(ax + b)a.} \\ \\

To find the second derivative of the function sin(ax + b) :

\sf{Function\:of\:y = cos(ax + b)a} \\ \\

\textsf{By applying the product rule of differentiation and substituting the values in it,}\\\textsf{we get :-} \\ \\

\underline{\sf{Product\:rule\: differentiation :-}} \\ \\ \sf{\dfrac{dy}{dx} = (u)\cdot\dfrac{d(v)}{dx} + (v)\cdot\dfrac{d(u)}{dx}} \\ \\

\textsf{Here,} \\ \bullet\:\textsf{The value of u = cos(ax + b)} \\ \bullet\:\textsf{The value of v = a} \\ \\

:\implies \sf{\dfrac{dy}{dx} = cos(ax + b)\cdot\dfrac{d(a)}{dx} + (a)\cdot\dfrac{d[cos(ax + b)]}{dx}} \\ \\

\textsf{By applying the constant rule of differentiation and substituting the values in it,}\\\textsf{we get :-} \\ \\

\underline{\sf{Constant\:rule\: differentiation :-}} \\ \\ \sf{\dfrac{dc}{dx} = 0} \\ \\

:\implies \sf{\dfrac{dy}{dx} = cos(ax + b)\cdot(0) + (a)\cdot\dfrac{d[cos(ax + b)]}{dx}} \\ \\

\textsf{Now, By applying the chain rule of differentiation and substituting the values in it,}\\\textsf{we get :-} \\ \\

\underline{\sf{Chain\:rule\: differentiation :-}} \\ \\ \sf{\dfrac{dy}{dx} = \dfrac{dy}{du}\cdot\dfrac{du}{dx}} \\ \\

\textsf{Here,} \\ \bullet\:\textsf{The value of y = cos(ax + b)} \\ \bullet\:\textsf{The value of u = (ax + b)} \\ \\

:\implies \sf{\dfrac{dy}{dx} = (a)\cdot\bigg[\dfrac{d[cos(ax + b)}{d(ax + b)}\cdot\dfrac{d(ax + b)}{dx}\bigg]} \\ \\

\textsf{Now, by using the formulas and substituting them in the equation, we get :-} \\ \\ \bullet\:\underline{\sf{Derivative\:of\:cos(x)\:is \:-sin(x)}} \\ \sf{\dfrac{d[cos(x)]}{dx} = -sin(x)} \\ \\ \underline{\sf{Sum\:rule\: differentiation :-}} \\ \\ \sf{\dfrac{d}{dx}[f(x) + g(x)] = \dfrac{d[f(x)]}{du} + \dfrac{d[g(x)]}{dx}} \\ \\

:\implies \sf{\dfrac{dy}{dx} = (a)\cdot\bigg[-sin(ax + b)\cdot\dfrac{d(ax)}{dx} + \dfrac{d(b)}{dx}\bigg]} \\ \\

\textsf{By applying the constant rule of differentiation and substituting the values in it,}\\\textsf{we get :-} \\ \\

\underline{\sf{Constant\:rule\: differentiation :-}} \\ \\ \sf{\dfrac{dc}{dx} = 0} \\ \\

:\implies \sf{\dfrac{dy}{dx} = (a)\cdot[-sin(ax + b)\cdot(a + 0)]} \\ \\

:\implies \sf{\dfrac{dy}{dx} = -sin(ax + b)a^{2}} \\ \\

\boxed{\therefore \sf{\dfrac{dy}{dx} = -sin(ax + b)a^{2}}} \\ \\

\sf{Thus,\:the\:derivative\:of\:cos(ax + b)a\:is\:-sin(ax + b)a^{2}.} \\ \\


QueenOfStars: Well explained! Perfection at it's peak! :D
jay419: hii
Answered by ItźDyñamicgirł
11

Solution

Let y = sin ( ax + b )

 \sf \: then \:  \: \:  \dfrac{dy}{dx} = \:   \dfrac{d}{dx} \:    \sin(ax + b)  \\

 \sf  \implies \:  \cos( \: ax + b \: )  \:  \dfrac{d}{dx} \:  (ax \:  +  \: b) \\

 \sf \implies \:  \cos( \: ax +  \: b \: ) \times  ( \: a \:  x  \: 1 + b \: ) \\

 \implies \sf \: a \sin \dfrac{\pi}{2}   + ( \: ax + b \: ) \\

 \sf \dfrac{ {d}^{2}y }{ {dx}^{2}  }  \:   =   \dfrac{d}{dx}  \: a \: \cos( \: ax + b \: )  \\

 \sf \implies \: a \dfrac{d}{dx}  \cos( \: ax + b \: )  \\

 \sf \implies \: a( -  \sin( \: ax + b \: ) ). \:  \dfrac{d}{dx} ( \: ax + b \: ) \\

 \implies \sf \: a(  -  \: sin \: ( \: ax + b \: )) \times ( \: a \: x \: 1 + 0 \: ) \\

 \implies \sf {a}^{2} .sin(\pi + ( \: ax + b \: )) \\

 \sf \implies \:  {a}^{2} .sin \: ( \dfrac{2\pi}{2}  + ( \: ax + b \: )) \\

 \sf \dfrac{ {d}^{3}y }{d {x}^{3} }  =  \dfrac{d}{dx} ( -  {a}^{2}   \: \sin( \: x + b \:  ) \\

 \sf \implies \:  -  {a}^{2}  \dfrac{d}{dx} \:  sin( \: ax + b \: ) \\

 \sf \implies \:  -  {a}^{2} . \cos( \: ax + b \: ) . \:  \dfrac{d}{dx}( \: ax + b \: )  \\

 \sf \implies \:  -  {a}^{2} . \cos( \: ax + b \: )  \times (a \: x \:  1 + 0) \\

 \sf \implies \:  {a}^{3} . \sin \dfrac{3\pi}{2}   + ( \: ax + b \: ) \\

In general , the nth order derivative is given by

 \sf  \dfrac{{d}^{n}y}{d {x}^{n} } =  {a}^{n} . \sin \dfrac{n\pi}{2}  + ( \: ax + b \: )


jay419: tu kiti nalayak aahes
jay419: mhanje mala vatla suddha nhvata
jay419: tu itka nalayak pana karshil
jay419: aani kadhi bolu nako
jay419: mazyashi
QueenOfStars: Good! :)
Similar questions