Math, asked by BrainlyHelper, 1 year ago

Find the second order derivatives of the function.e^6x.cos3x

Answers

Answered by abhi178
9
Let \bf{y=e^{6x}cos3x}
now difference y with respect to x ,
\bf{\frac{dy}{dx}=\frac{d(e^{6x}cos3x)}{dx}}\\\\=\bf{e^{6x}\frac{d(cos3x)}{dx}+cos3x\frac{d(e^{6x})}{dx}}\\\\=\bf{e^{6x}.(-3sin3x)+cos3x.6e^{6x}}\\\\=\bf{e^{6x}(-3sin3x+6cos3x)}

so, \frac{dy}{dx}=e^{6x}(-3sin3x+6cos3x)
now differentiate \frac{dy}{dx} with respect to x once again,

\bf{\frac{d^2y}{dx^2}=\frac{d\{e^{6x}(-3sin3x+6cos3x)\}}{dx}}\\\\=\bf{e^{6x}\{(-9cos3x)+(-18sin3x)\}+6e^{6x}(-3sin3x+6cos3x)}\\\\=\bf{e^{6x}(27cos3x-36sin3x)}

hence, d²y/dx² = 9e^{6x}(3cos3x - 4sin3x)
Similar questions