Math, asked by dineshrathod7021, 4 months ago

Find the second order partial derivatives of F(x.y) = (3x + 2y).4​

Answers

Answered by MaheswariS
3

\textbf{Given:}

\mathsf{F(x,y)=(3x+2y)^4}

\textbf{To find:}

\textsf{Second order partial derivatives of F}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{F(x,y)=(3x+2y)^4}

\textsf{Differentiate partially with respect to x}

\mathsf{\dfrac{\partial\,F}{\partial\,x}=4(3x+2y)^3(3)=12(3x+2y)^3}

\textsf{Differentiate again partially with respect to x}

\mathsf{\dfrac{{\partial}^2F}{\partial\,x^2}=36(3x+2y)^2(3)=108(3x+2y)^2}

\implies\boxed{\mathsf{\dfrac{{\partial}^2F}{\partial\,x^2}=108(3x+2y)^2}}

\mathsf{F(x,y)=(3x+2y)^4}

\textsf{Differentiate partially with respect to y}

\mathsf{\dfrac{\partial\,F}{\partial\,y}=4(3x+2y)^3(2)=8(3x+2y)^3}

\textsf{Differentiate again partially with respect to y}

\mathsf{\dfrac{{\partial}^2F}{\partial\,y^2}=24(3x+2y)^2(2)=48(3x+2y)^2}

\implies\boxed{\mathsf{\dfrac{{\partial}^2F}{\partial\,y^2}=48(3x+2y)^2}}

\textbf{Find more:}

If u=x³y³/x³+y³,prove that x du/dx + y du/dy=3u​

https://brainly.in/question/35340172

Similar questions