Math, asked by Aayushkarole, 3 months ago

Find the semi perimeter of a square whose the each side measure 14.56cm​

Answers

Answered by tantanisha669
0

Answer:

Step-by-step explanation:

P=58.24

a Side  

14.56

A

Solution

P=4a=4·14.56=58.24

Answered by BrainlyRish
2

Diagram :

  • \setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf D}\put(-0.5,4.2){\bf A}\put(4.2,-0.5){\bf C}\put(4.2,4.2){\bf B}\put(1.5,-0.6){\bf\large 14.56\ cm}\put(4.4,2){\bf\large 14.56\ cm}\end{picture}

Given : The Side of a Square is 14.56 cm.

Need To Find : Semi-Perimeter of Square.

\dag\frak{\underline { As,\:We\:know\:that,\:}}\\

\star\boxed {\sf{ \pink{ Semi-Perimeter _{(Square)} = \dfrac{ 4 \times a }{2} \:units}}}\\

Where,

  • a is the length of the Side of Square in cm .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

:\implies \sf{ Semi-Perimeter _{(Square)} = \dfrac{4 \times 14.56 }{2}}\\\\:\implies \sf{ Semi-Perimeter _{(Square)} = \dfrac{58.24}{2}}\\\\:\implies \sf{ Semi-Perimeter _{(Square)} = \cancel {\dfrac{58.24 }{2}}}\\\\\underline {\boxed{\pink{ \mathrm {  Semi-Perimeter _{(Square)} = 29.12\: cm}}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { Hence,\: Semi-Perimeter \:of\:Square \:is\:\bf{29.12\: cm}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions