Math, asked by Anonymous, 1 year ago

Find the set of all possible real values of a such that the inequality x - ( a - 1 )) ( x - ( a² + 2 ) ) < 0 holds for all x ∈ ( -1 , 3 )

Answers

Answered by MaheswariS
1

\textbf{Given:}

\textsf{Inequality}

\mathsf{(x-(a-1))\;(x-(a^2+2))\;&lt;\;0\;holds\;for\;all\;x\;\in\;(-1,3)}

\textbf{To find:}

\textsf{The set of all possible real values of a}

\textbf{Solution:}

\underline{\textsf{Concept used:}}

\boxed{\mathsf{(x-a)(x-b)\;&lt;\;0\;is\;true\;when\;a\;&lt;\;x\;&lt;\;b}}

\mathsf{Consider,}

\mathsf{(x-(a-1))\;(x-(a^2+2))\;&lt;\;0}

\implies\mathsf{a-1\,&lt;\,x\,&lt;\,a^2+2}

\mathsf{But\,-1\,&lt;\,x\,&lt;\,3}

\implies\mathsf{a-1=-1}

\implies\mathsf{a=0}

\mathsf{and}

\mathsf{a^2+2=3}

\mathsf{a^2=1}

\implies\mathsf{a=\pm\,1}

\textsf{a=-1 does not satisfy the given inequality}

\therefore\textbf{The possible values of a are all real no. from 0 to 1}

Similar questions