Math, asked by aslinjoshy, 16 days ago

find the shortest and longest distance from the point (1,2,-1) to the sphere x^2+y^2+z^2=24 using lagrange's method of constrained maxima and minima​

Answers

Answered by sanjusri31225
0

Answer:

1,2,−1)

x

2

+y

2

+z

2

=24

length =

1

2

+2

2

+(−1)

2

=

1+4+1

=

6

Now, F(x,y,z,λ)=(x−1)

2

+(y−2)

2

+(z+1)

2

−λ(x

2

+y

2

+z

2

−24)

⇒x

2

+1−2x+y

2

+4−4y+z

2

+1+2z−λx

2

−λy

2

−24λ

=(1+λ)x

2

+(1−λ)y

2

−2x+1−4y+4+2z+1+(1−λ)z

2

+24λ

∂x

∂F

=2x+2λx−2=0 __(1)

∂y

∂F

=2y−2λy−4=0 ___(2)

∂z

∂F

=2z−2λz+2=0 ___(3)

∂λ

∂F

=−x

2

−y

2

+2y−z

2

=0 ___(4)

x+λx−1=0

x=

1+λ

1

y−λy−2=0

y=

1−λ

+2

z+λz+1=0

z=−

1−λ

1

we get ,

y=−2z,x=

2(1−y)

−y

Now, putting x ^ z values in equation (4) we get

−(−

2(1−y)

y

)

2

−y

2

−(

2

−y

)

2

+24=0

4(1−y)

2

y

2

+y

2

+

4

y

2

−24=0

y

2

+4y

2

(1−y)

2

+y

2

(1−y)

2

−24×4(1−y)

2

=0

y

2

+4y

2

(1+y

2

−2y)+y

2

(1+y

2

−2y)−96(1+y

2

−2y)=0

y

2

+4y

2

+4y

4

−8y

3

+y

2

+y

4

−2y

3

−96−96y

2

+192y=0

5y

4

−90y

2

−10y

3

+192y−96=0

Was this answer helpful?

Similar questions