Math, asked by ahajags, 5 months ago

Find the side and perimeter of a square whose diagonal is 10 cm.

Answers

Answered by doctordeadpoolpc9zl4
3

Step-by-step explanation:

diagonal = √2× side

therefore,

side = 10/√2

side = 5√2cm ( by rationalising the denominator)

perimeter = 4 × side

= 4 × 5√2

= 20√2 cm

Answered by Anonymous
18

\;\;\underline{\textbf{\textsf{ Given:-}}}\\ \\

• Diagonal of a square is = 10 cm

 \\

\;\;\underline{\textbf{\textsf{ To Find:-}}}\\ \\

• Side and perimeter of the square

 \\

\;\;\underline{\textbf{\textsf{ Solution :-}}}\\ \\

Let's consider that the given square be ABCD.

 \\

In ΔABD :-

Using Pythagoras theorem :-

 \\

 \dashrightarrow \sf \:  \:  {AB}^{2}  +  {AD}^{2}  =  {BD}^{2}  \\  \\  \\

\dashrightarrow \sf \:  \:  {a}^{2}  +  {a}^{2}  =  {10}^{2}  \\  \\  \\

 \dashrightarrow \sf \:  \: {2a}^{2}  =  100 \\  \\  \\

\dashrightarrow \sf \:  \: {a}^{2}  =   \dfrac{100}{2}  \\  \\  \\

\dashrightarrow \sf \:  \: {a}^{2}  =  50 \\  \\  \\

\dashrightarrow \sf \:  \: a  =   \sqrt{50 }  \\  \\  \\

 \dashrightarrow \sf \:  \:  \boxed{ \purple{ \sf{a  </p><p>=  5 \sqrt{2}  \: cm }}}\\  \\

\;\;\underline{\textbf{\textsf{ Hence-}}}

• Side of the square is 5√2 cm .

 \\

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Again, we are asked to find perimeter of the square.

We know that,

 \\

\star\;{\boxed{\sf{\purple{Perimeter _{\;(Square )} = 4 × side)}}}}\\ \\

  \\

 \dashrightarrow \sf \:  \: Perimeter = 4 \times a \\  \\  \\

\dashrightarrow \sf \:  \: Perimeter = 4 \times 5 \sqrt{2}  \\  \\  \\

 \dashrightarrow \sf \:  \: \boxed{ \sf{ \purple{ Perimeter = 20 \sqrt{2}  \: cm}}}  \\  \\

\;\;\underline{\textbf{\textsf{ Hence-}}}

\underline{\textsf{ Perimeter of the square will be   \textbf{  20√2cm  }}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions