Math, asked by Mister360, 2 months ago

Find the sides of triangle if they are in ratio 5:2:3

Answers

Answered by kumari17shiromani
3

Solution,

  • Let the angles of a triangle be 2x,3x,5x.
  • Sum of interior angles of a triangle is 180°
  • Hence ∠A+∠B+∠C=180°
  • ⇒2x+3x+5x=180°
  • ⇒10x=180°
  • ⇒x=18°
  • Angles are 36°,54°,90

Required answer,

  • Angles are 36°,54°,90

hope it's helpful to you

Answered by mathdude500
3

Given :-

  • The sides of a triangle are in the ratio 5 : 2 :3.

To Find :-

  • The sides of a triangle.

Concept used :-

Cosine law

  • Let us consider a triangle ABC such that side AB = c units, side AC = b units and side BC = a units.

then

  • angle betweem AB & AC is given by

\rm :\longmapsto\:cosA = \dfrac{ {b}^{2} +  {c}^{2}  -  {a}^{2}  }{2bc}

Lets do the problem now !!

\large\underline{\bold{Solution :-  }}

Let us consider a triangle ABC such that

  • side AB = c units,

  • side AC = b units

  • side BC = a units.

It is given that

  • The sides of triangle are in ratio 5:2:3

So,

  • a : b : c = 5 : 2 : 3

So,

\begin{gathered}\begin{gathered}\bf \: Let \: sides \: of \: triangle \: be - \begin{cases} &\sf{a \:  =  \: 5x} \\ &\sf{b \:  =  \: 2x}\\ &\sf{c \:  =  \: 3x} \end{cases}\end{gathered}\end{gathered}

  • Let A be the angle between the sides b and c,

then

\rm :\longmapsto\:cosA = \dfrac{ {b}^{2} +  {c}^{2}  -  {a}^{2}  }{2bc}

\rm :\longmapsto\:cosA = \dfrac{ {(2x)}^{2} +  {(3x)}^{2}  -  {(5x)}^{2}  }{2 \times 2x \times 3x}

\rm :\longmapsto\:cosA = \dfrac{ {4x}^{2} +  {9x}^{2}  -  {25x}^{2}  }{12 {x}^{2} }

\rm :\longmapsto\:cosA =  -  \: \dfrac{12 {x}^{2} }{12 {x}^{2} }

\rm :\longmapsto\:cosA \:  =  \:  - 1

\rm :\implies\: \angle \: A \:  =  \: 180 \degree

\bf\implies \: \triangle \: is \: not \: possible

Similar questions