Math, asked by noob1674wastaken, 6 hours ago

find the simple interest an compound interest on 5000rs at rate of 10% pa for 3 years.

Answers

Answered by shivamkashyapp22
0

Answer:

1500

Step-by-step explanation:

principal=₹5000

Time=3years

rate=10%

sp= 5000×3×10/100

sp=1500

amount=principal + simple interest

=5000 + 1500

=₹6500

mark me brainlist

Answered by Anonymous
50

Answer:

Given :

  • → Principle = Rs.5000
  • → Rate = 10%
  • → Time = 3 years.

\begin{gathered}\end{gathered}

To Find :

  • → Simple Interest
  • → Amount
  • → Compound Interest

\begin{gathered}\end{gathered}

Using Formulas :

\longrightarrow\small{\underline{\boxed{\sf{ S.I = \dfrac{P \times R \times T}{100}}}}}

\longrightarrow\small{\underline{\boxed{\sf{A= P\bigg(1 + \dfrac{ {R}}{100} \bigg)^{T}}}}}

\longrightarrow\small{\underline{\boxed{\sf{{C.I=A- P}}}}}

✏ Where :-

  • ➠ P = Principle
  • ➠ R = Rate
  • ➠ T = Time
  • ➠ A = Amount
  • ➠ S.I = Simple Interest
  • ➠ C.I = Compound Interest

\begin{gathered}\end{gathered}

Solution :

✏ Finding Simple Interest :-

\dashrightarrow\small{\sf{ S.I = \dfrac{P \times R \times T}{100}}}

\dashrightarrow\small{\sf{ S.I = \dfrac{5000\times 10\times 3}{100}}}

\dashrightarrow\small{\sf{ S.I = \dfrac{5000\times 30}{100}}}

\dashrightarrow\small{\sf{ S.I = \dfrac{150000}{100}}}

\dashrightarrow\small{\sf{ S.I =  \cancel{\dfrac{150000}{100}}}}

\dashrightarrow\small{\sf{ S.I = Rs.1500}}

\bigstar \: \small{\purple{\underline{\boxed{\sf{ S.I = Rs.1500}}}}}

∴ The simple interest is Rs.1500.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

✏ Finding compound interest but first we have to calculate amount :-

\dashrightarrow\small{\sf{Amount= P\bigg(1 + \dfrac{ {R}}{100} \bigg)^{T}}}

\dashrightarrow\small{\sf{Amount= 5000\bigg(1 + \dfrac{10}{100} \bigg)^{3}}}

{\dashrightarrow{\small{\sf{Amount= 5000\bigg(\dfrac{(1 \times 100)(10 \times 1)}{100} \bigg)^{3}}}}}

{\dashrightarrow{\small{\sf{Amount= 5000\bigg(\dfrac{100 + 10}{100} \bigg)^{3}}}}}

{\dashrightarrow{\small{\sf{Amount= 5000\bigg(\dfrac{110}{100} \bigg)^{3}}}}}

{\dashrightarrow{\small{\sf{Amount= 5000\bigg( \cancel\dfrac{110}{100} \bigg)^{3}}}}}

{\dashrightarrow{\small{\sf{Amount= 5000\bigg(\dfrac{11}{10}  \bigg)^{3} }}}}

{\dashrightarrow{\small{\sf{Amount= 5000\bigg(\dfrac{11}{10} \times  \dfrac{11}{10}  \times  \dfrac{11}{10}   \bigg)}}}}

{\dashrightarrow{\small{\sf{Amount= 5000\bigg(\dfrac{1331}{1000}\bigg)}}}}

{\dashrightarrow{\small{\sf{Amount= 5000 \times \dfrac{1331}{1000}}}}}

{\dashrightarrow{\small{\sf{Amount=  \cancel{5000}\times \dfrac{1331}{\cancel{1000}}}}}}

{\dashrightarrow{\small{\sf{Amount=  5 \times 1331}}}}

{\dashrightarrow{\small{\sf{Amount=  Rs.6655}}}}

{\dashrightarrow{\small{\purple{\underline{\boxed{\sf{Amount=  Rs.6655}}}}}}}

∴ The Amount is Rs.6655.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

✏ Now, calculating the compound interest

\longrightarrow\small{\sf{{C.I=A- P}}}

\longrightarrow\small{\sf{{C.I=6655- 5000}}}

\longrightarrow\small{\purple{\underline{\boxed{\sf{{C.I=Rs.1655}}}}}}

∴ The compound interest is Rs.1655.

\begin{gathered}\end{gathered}

Learn More :

Principal:

→ Money which is taken or given in the form of loan. That's called the principal. It is denoted by P.

Time:

The period for which the loan is taken or given is called time. It is expressed by T or t.

Rate of Interest

→ The rate at which interest is charged or paid is called interest rate. It is denoted by r or R.

Interest:

→ In addition to the principal amount, which is refunded, interest is paid. It is denoted by I.

Amount :

→ For example, money taken is called principal and money returned is called compound.

\rule{150}1.5

\longrightarrow\small{\underline{\boxed{\sf{\green{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\green{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\green{Amount = Principle + Interest}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\green{ Principle=Amount - Interest }}}}}

\longrightarrow\small{\underline{\boxed{\sf{\green{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\green{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\green{Rate = \dfrac{Simple \: Interest \times 100}{Principle \times Time}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\green{Time = \dfrac{Simple \: Interest \times 100}{Principle \times Rate}}}}}}

\underline{\rule{220pt}{2.5pt}}

Similar questions