find the simplified form of cos⁴ theta - sin 4 theta in term of sin theta
Answers
refer attachment for your answer
The simplified form of cos⁴θ - sin 4θ in terms of sinθ is:
-cos⁴θ + 6cos²θ - 4 = -[(1 - sin²θ)²] + 6(1 - sin²θ) - 4
= -1 + 8sin²θ - sin⁴θ
We can use the identity cos²θ + sin²θ = 1 to express cos⁴θ in terms of sin²θ:
cos⁴θ = (cos²θ)² = (1 - sin²θ)² = 1 - 2sin²θ + sin⁴θ
Similarly, we can use the identity sin²θ = 1 - cos²θ to express sin⁴θ in terms of cos²θ:
sin⁴θ = (sin²θ)² = (1 - cos²θ)² = 1 - 2cos²θ + cos⁴θ
Substituting these expressions into cos⁴θ - sin 4θ, we get:
cos⁴θ - sin 4θ = (1 - 2sin²θ + sin⁴θ) - sin(2θ)²
= 1 - 2sin²θ + sin⁴θ - 4sin²θ
= sin⁴θ - 6sin²θ + 1
Finally, substituting sin²θ = 1 - cos²θ, we get:
cos⁴θ - sin 4θ = (1 - cos⁴θ) - 6(1 - cos²θ) + 1
= -cos⁴θ + 6cos²θ - 4
The simplified form of cos⁴θ - sin 4θ in terms of sinθ is:
-cos⁴θ + 6cos²θ - 4 = -[(1 - sin²θ)²] + 6(1 - sin²θ) - 4
= -1 + 8sin²θ - sin⁴θ
for such more question on theta
https://brainly.in/question/10401784
#SPJ2