find the slant height circular cone whose volume is 12936 CM.. and radius of the base is 21cm.also find its total surface area.
Answers
Answered by
18
Solution :
Given, Volume of the cone
![V \: = 12936 cm^3 V \: = 12936 cm^3](https://tex.z-dn.net/?f=+V+%5C%3A+%3D+12936+cm%5E3)
Radius of the base of cone = 21 cm
We know that,
V =![\frac{1}{3} \pi {r}^{2} h \frac{1}{3} \pi {r}^{2} h](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B3%7D+%5Cpi+%7Br%7D%5E%7B2%7D+h)
So,
12936 =![\frac{1}{3} \pi {r}^{2} h \: \frac{1}{3} \pi {r}^{2} h \:](https://tex.z-dn.net/?f=+%5Cfrac%7B1%7D%7B3%7D+%5Cpi+%7Br%7D%5E%7B2%7D+h+%5C%3A+)
![12936 \times \frac{7}{22} = \frac{1}{3} ( {21)}^{2} h \\ \\ 4116 \times 3 = 441h \\ \\ h = \frac{4116 \times 3}{441} = 28 12936 \times \frac{7}{22} = \frac{1}{3} ( {21)}^{2} h \\ \\ 4116 \times 3 = 441h \\ \\ h = \frac{4116 \times 3}{441} = 28](https://tex.z-dn.net/?f=12936+%5Ctimes+%5Cfrac%7B7%7D%7B22%7D+%3D+%5Cfrac%7B1%7D%7B3%7D+%28+%7B21%29%7D%5E%7B2%7D+h+%5C%5C+%5C%5C+4116+%5Ctimes+3+%3D+441h+%5C%5C+%5C%5C+h+%3D+%5Cfrac%7B4116+%5Ctimes+3%7D%7B441%7D+%3D+28)
Also,
If slant height = l,
![{l}^{2} = {r}^{2} + {h}^{2} \\ \\ \: \: = 21 ^{2} + ( {28}) ^{2} \\ \: \: = 441 + {784}\\ \: \: = 1225 {l}^{2} = {r}^{2} + {h}^{2} \\ \\ \: \: = 21 ^{2} + ( {28}) ^{2} \\ \: \: = 441 + {784}\\ \: \: = 1225](https://tex.z-dn.net/?f=+%7Bl%7D%5E%7B2%7D+%3D+%7Br%7D%5E%7B2%7D+%2B+%7Bh%7D%5E%7B2%7D+%5C%5C+%5C%5C+%5C%3A+%5C%3A+%3D+21+%5E%7B2%7D+%2B+%28+%7B28%7D%29+%5E%7B2%7D+%5C%5C+%5C%3A+%5C%3A+%3D+441+%2B+%7B784%7D%5C%5C+%5C%3A+%5C%3A+%3D+1225)
![l = \sqrt{1225} = 35 l = \sqrt{1225} = 35](https://tex.z-dn.net/?f=l+%3D+%5Csqrt%7B1225%7D+%3D+35)
![\boxed{ \textbf{ Slant height = 35 cm. }} \boxed{ \textbf{ Slant height = 35 cm. }}](https://tex.z-dn.net/?f=+%5Cboxed%7B+%5Ctextbf%7B+Slant+height+%3D+35+cm.+%7D%7D)
_____________________________
Now, We are required to find TSA ( Total surface area)
TSA of cone =![\pi r(l+r) \pi r(l+r)](https://tex.z-dn.net/?f=+%5Cpi+r%28l%2Br%29+)
TSA = 22/7 ( 21) ( 21 + 35)
= 22 ( 3) ( 56)
= 3696 cm²
Given, Volume of the cone
Radius of the base of cone = 21 cm
We know that,
V =
So,
12936 =
Also,
If slant height = l,
_____________________________
Now, We are required to find TSA ( Total surface area)
TSA of cone =
TSA = 22/7 ( 21) ( 21 + 35)
= 22 ( 3) ( 56)
= 3696 cm²
Answered by
18
- Volume of the cone = 12936 cm³.
- Radius = 21 cm.
Let the height be h cm.
Similar questions