Math, asked by similarbikash, 1 year ago

find the slant height circular cone whose volume is 12936 CM.. and radius of the base is 21cm.also find its total surface area. ​

Answers

Answered by HappiestWriter012
18
Solution :

Given, Volume of the cone

 V \: = 12936 cm^3

Radius of the base of cone = 21 cm

We know that,

V =  \frac{1}{3} \pi {r}^{2} h

So,

12936 =  \frac{1}{3} \pi {r}^{2} h \:

12936 \times \frac{7}{22} = \frac{1}{3} ( {21)}^{2} h \\ \\ 4116 \times 3 = 441h \\ \\ h = \frac{4116 \times 3}{441} = 28

Also,

If slant height = l,

 {l}^{2} = {r}^{2} + {h}^{2} \\ \\ \: \: = 21 ^{2} + ( {28}) ^{2} \\ \: \: = 441 + {784}\\ \: \: = 1225

l = \sqrt{1225} = 35

 \boxed{ \textbf{ Slant height = 35 cm. }}

_____________________________

Now, We are required to find TSA ( Total surface area)

TSA of cone =  \pi r(l+r)

TSA = 22/7 ( 21) ( 21 + 35)

= 22 ( 3) ( 56)

= 3696 cm²
Answered by Anonymous
18

\mathfrak{Step-by-step\:explanation:}

\underline{\underline{\bold{Given:}}}

  • Volume of the cone = 12936 cm³.
  • Radius = 21 cm.

Let the height be h cm.

\boxed{\bold{Volume\:of\:cone=\dfrac{1}{3}\pi r^2h.}}\\\\\\\implies\bold{\dfrac{1}{3}\pi r^2h=12936}\\\\\\\implies\bold{h=\dfrac{12936\times 3}{\pi \times 21 \times 21}}\\\\\\\implies\bold{h=\dfrac{88}{\pi}=88\times \dfrac{7}{22}}\\\\\\\implies\bold{h=4\times 7=28.}\\\\\\\boxed{\bold{Slant\:height(l)=\sqrt{h^2+r^2}}}\\\\\\\tt{=\sqrt{28^2+21^2}}\\\\\\\tt{=\sqrt{784+441}}\\\\\\\tt{=\sqrt{1225}=35\;cm.}\\\\\\\boxed{\boxed{\bold{Slant\:height=35\;cm.}}}

\boxed{\bold{Total\:Surface\:Area=\pi r(r+l).}}\\\\\\\tt{=\dfrac{22}{7}\times21(21+35)}\\\\\\\tt{=66\times 56=3696\:cm^2.}\\\\\\\boxed{\boxed{\bold{Total\:Surface\:Area=3696\:cm^2.}}}

Similar questions