Math, asked by preyanshbhatter2005, 3 months ago

Find the slant height of a right circular cone whose diameter of base is 10 cm and altitude is 12cm​

Answers

Answered by FIREBIRD
82

Answer:

Slant Height of the cone is 13 cm

Step-by-step explanation:

We Have :-

A Right Circular Cone

Diameter of base = 10 cm

Altitude = 12 cm

To Find :-

Slant Height

Formula Used :-

slant \: height \: ( \: l \: ) \:  =  \:  \sqrt{ {radius \: ( \: r \: ) \: }^{2} +  {height \: ( \: h \: ) \: }^{2}  }

Solution :-

slant \: height \: ( \: l \: ) \:  =  \:  \sqrt{ {radius \: ( \: r \: ) \: }^{2} +  {height \: ( \: h \: ) \: }^{2}  }  \\  \\ l \:  =  \:  \sqrt{ {r}^{2}  +  {h}^{2} }  \\  \\ l \:  =  \:  \sqrt{ {(5)}^{2}  +  {(12)}^{2} }  \\  \\ l \:  =  \:  \sqrt{25 + 144}  \\  \\ l  \:  =  \:  \sqrt{169}  \\  \\ l \:  =  \: 13 \: cm

Slant Height of the cone is 13 cm

Answered by CopyThat
51

Given

  • Diameter of base = 10 cm
  • Altitude = 12 cm

To find

  • Slant height

Solution

  • Diameter = 10 cm
  • Radius = Diameter/2
  • Radius = 5 cm (r)
  • Altitude = 12 cm (h)
  • Slant height = ? (l)

We know that in a cone :-

  • slant height = √radius² + height²
  • l = √r² + h²
  • l = √5² + 12²
  • l = √25 + 144
  • l = √169
  • l = 13

Hence, the slant height of the right circular cone is 13 cm

Similar questions