Math, asked by jessica947, 8 months ago

find the slant height of a right circular cone whose height is 3.5 m and base radius is 12m​

Answers

Answered by aryan180296
1

Answer:

12.5 cm

Step-by-step explanation:

Apply the Pythagoras theorem as

l=√h^2+r^2

√ (3.5)^2+(12)^2

12.25+144= √156.25

l= 12.5

Answered by sethrollins13
6

Given :

  • Height of Cone is 3.5m
  • Radius of Cone is 12m.

To Find :

  • Slant Height of Cone.

Solution :

\longmapsto\tt{Radius=12m}

\longmapsto\tt{Height=3.5m}

For Slant Height :

\longmapsto\tt\bold{{l}^{2}=\sqrt{{(h)}^{2}+{(r)}^{2}}}

\longmapsto\tt{l=\sqrt{{(3.5)}^{2}+{(12)}^{2}}}

\longmapsto\tt{l=\sqrt{12.25+144}}

\longmapsto\tt{l=\sqrt{156.25}}

\longmapsto\tt\bold{l=12.5cm}

So , The slant height of the cone is 12.5cm..

_______________________

  • C.S.A of Cone = πrl
  • T.S.A of Cone = πrl(l+r)
  • Volume of Cone = 1/3 πr²h
  • Slant Height of Cone = √r² + h²

_______________________

Similar questions