Math, asked by riyashazi786, 7 months ago

find the slope and equation of normal to the curve y=sin theta at theta= pi by 4​

Answers

Answered by MaheswariS
2

\underline{\textsf{Given:}}

\textsf{Curve is}\,\;\mathsf{y=sin\,\theta}

\underline{\textsf{To find:}}

\textsf{Slope and equation of the normal to the curve}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{y=sin\,\theta}

\textsf{Differentiate with respect to}\;\mathsf{'\theta'}

\mathsf{\dfrac{dy}{d\theta}=cos\,\theta}

\textsf{Slope of tangent}

\mathsf{m=(\dfrac{dy}{d\theta})_{\theta=\frac{\pi}{4}}}

\mathsf{=cos\dfrac{\pi}{4}}

\mathsf{=\dfrac{1}{\sqrt{2}}}

\textsf{Slope of normal}

\mathsf{=\dfrac{-1}{m}}

\mathsf{=-\sqrt{2}}

\implies\boxed{\textsf{Slope of normal}\;\mathsf{=\sqrt{2}}}

\textsf{The equation of normal is}

\mathsf{y-y_1=\dfrac{-1}{m}(x-x_1)}

\mathsf{y-sin\dfrac{\pi}{4}=-\sqrt{2}(\theta-\dfrac{\pi}{4})}

\mathsf{y-\dfrac{1}{\sqrt{2}}=-\sqrt{2}\theta+\sqrt{2}\dfrac{\pi}{4}}

\textsf{Rearranging terms, we get}

\implies\boxed{\mathsf{\sqrt{2}\theta-y+(\sqrt{2}\dfrac{\pi}{4}+\dfrac{1}{\sqrt{2}})=0}}

Similar questions