Math, asked by rohanmaharana9447, 9 days ago

find the slope of line passing through the points A(2 , 5) B(4 , -1)​

Answers

Answered by jitendra12iitg
5

Answer:

The answer is -3

Step-by-step explanation:

Concept: Slope of the line joining the points (x_1,y_1) and (x_2,y_2) is

                                \boxed{\dfrac{y_2-y_1}{x_2-x_1}}

Therefore slope of the line passing through the

points A(2,5) and B(4,-1) is

                                         =\dfrac{-1-5}{4-2}=\dfrac{-6}{2}=-3

Answered by Anonymous
10

Answer:

The slope of line passing through the points A(2 , 5) B(4 , -1) is -3.

Step-by-step explanation:

Question :

Find the slope of line passing through the points A(2 , 5) B(4 , -1).

\rule{300}{1.5}

Solution :

The slope of the line passing through the points can be found by using the formula :

{\longrightarrow{\underline{\boxed{\pmb{\sf{m = \dfrac{y_2 -  y_1 }{x_2 - x_1 }}}}}}}

Where :-

  • \rm{m} = slope
  • \rm{y_2} = -1
  • \rm{y_1} = 5
  • \rm{x_2} = 4
  • \rm{x_1} = 2

Substituting all the given values in the formula to find the slope of line passing through the points A(2 , 5) B(4 , -1) :

\begin{gathered}\qquad{\longrightarrow{\sf{m = \dfrac{y_2 -  y_1 }{x_2 - x_1}}}} \\  \\ \qquad{\longrightarrow{\sf{m = \dfrac{( - 1) - (5) }{(4)  - (2) }}}} \\ \\  \qquad{\longrightarrow{\sf{m = \dfrac{ - 1 - 5 }{4  - 2 }}}} \\ \\  \qquad{\longrightarrow{\sf{m = \dfrac{ - 6}{2 }}}} \\  \\ \qquad{\longrightarrow{\sf{m =  \cancel{\dfrac{ - 6}{2 }}}}} \\  \\ \qquad{\longrightarrow{\sf{\underline{\underline{\red{m = - 3}}}}}}\end{gathered}

∴ The slope of line AB is -3.

\rule{300}{1.5}

Learn More :

More formulas related to slope :

➝ Standard form = \rm{Ax  + By =  C}

➝ Slope-intercept form = \rm{y = mx + b}

➝ Point-Slope form = \rm{y - {y_1} = m \big( x - x_1  \big)}

 \underline{\rule{220pt}{3.5pt}}

Similar questions