Math, asked by adityamahale2003, 1 year ago

Find the slope of the chord of parabola y^2=4x whose midpoint is (1,1). Help with explanation

Answers

Answered by amitnrw
5

Slope = 2 for chord of parabola y^2=4x whose midpoint is (1,1).

Step-by-step explanation:

Let say coordinates of chord are

(x₁ , y₁ )   & (x₂ , y₂)

Midpoint = ( 1. 1)

= (x₁ + x₂)/2 = 1

=> x₁ + x₂ = 2

y₁ + y₂ = 2

y₁² = 4x₁

y₂² = 4x₂

Adding both

y₁²  + y₂²  = 4(x₁ + x₂)

=> y₁² + (2 - y₁)² = 4 * 2

=> 2y₁² - 4y₁ + 4 = 8

=> y₁² - 2y₁ - 2=  0

y₁  = 1 + √3     or 1 - √3

y₂ = 1  -  √3    or  1 +√3

y₁² = 4x₁

=>( 1 + √3)² = 4x₁

=> x₁ = 1  + √3/2

similarly  x₂ = 1  - √3/2

1  + √3/2 ,  1 + √3  

&  1  - √3/2 , 1 - √3  

Slope = ( 2√3 / √3)  = 2

Answered by pulakmath007
28

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO DETERMINE

The slope of the chord of parabola y^2=4x whose midpoint is (1,1)

CALCULATION

 \sf{Let  \: (x_1,y_1)  \: and  \: (x_2,y_2) \:  be \:  the \:  two  \: points}

Then

 \sf{{y_1}^{2}  = 4 x_1 \ \:  .......(1) \: }

 \sf{  {y_2}^{2}  = 4 x_2  \:  \:  \:  \: ........(2)\: }

On substraction

 \sf{{y_2}^{2} - {y_1}^{2}  =4 x_2 -  4 x_1 }

 \implies \:  \sf{({y_2}  + {y_1}  )( {y_2} - {y_1}  )\:  \: =4( x_2 -   x_1) }

 \implies \:   \displaystyle \:  \sf{ \frac{( {y_2} - {y_1}  )}{( x_2 -   x_1)}  \: \:  \sf{\:  \: =\frac{4}{({y_2}  + {y_1}  )}  }.......(3)}

Again

 \sf{(1,1) \: is \: the \: midpoint  \: of \: the \: line \: joining\: (x_1,y_1)  \: and  \: (x_2,y_2) \:}

So

 \implies \:   \displaystyle \:  \sf{  \frac{( x_2  +  x_1)}{2}    = 1 \:  \:  \: and \:  \:  \frac{( {y_2}  + {y_1}  ) }{2}   = 1\: }

 \implies \:   \displaystyle \:  \sf{ ( x_2  +  x_1)   = 2 \:  \:  \: and \:  \:  ( {y_2}  + {y_1}  )   = 2\: }  \: ......(4)

 \sf{Therefore \:  the  \: slope \:  of \:  the \:  chord  \: joining \:  the}

 \sf{\: (x_1,y_1)  \: and  \: (x_2,y_2) } \: is

 =   \displaystyle \:  \sf{ \frac{( {y_2} - {y_1}  )}{( x_2 -   x_1)}  \: \:  }

 = \displaystyle \sf{ \frac{4}{({y_2}  + {y_1}  )} } \:  \:  \:  \:  \:  \:  \:  \:  \: using \:  \:  \: (3)

 = \displaystyle \:  \sf{  \frac{4}{2} \: }

 = \displaystyle \:  \sf{2}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

if 2x+y+k=0 is a normal to the parabola x^2=16y then the value of k is __?

https://brainly.in/question/13446883

Similar questions