Math, asked by Anonymous, 6 months ago

Find the slope of the line perpendicular to the line AB, if A is (3, 3) and B is (-1, 1)

Don't post useless ans.​

Answers

Answered by ADARSHBrainly
13

{\sf{\large{\bigstar{{ \underline{ \underline{ \: Given:}}}}}}}

  • Line AB
  • A = (3,3)
  • B = (-1,1)

{\sf{\large{\bigstar{{ \underline{ \underline{ \:  \: To \:  find  :}}}}}}}

  • Slope of the line Perpendicular to line AB.

 \red{\sf{\large{\bigstar{{ \underline{ \underline{ \:  Solution:}}}}}}}

{ \sf{ We \:  know \:  that   \: Slope \:  of \:  line  \: joining  \: two  }} \\ {\sf{points \: is \: in \: form \: of    (x_1,x_2) and (y_1,y_2)}}

So, formula is,

 { \large{ \sf{ \boxed{ = \frac{y_2-y_1 }{x_2-x_1}}}}}

Here,

{\sf{\implies{(x_1,y_1) = (3,3) }}}

{\sf{\implies{(x_2,y_2) = (-1,1) }}}

{\sf{\implies{(x_2,y_2) = (-1,1) }}}

Slope of the line AB is ,

 \\ { \sf{ = \frac{1 - 3 }{ - 1 - 3}}}

 \\ { \sf{ = \frac{ - 2 }{  - 4}}}

 \\ { \sf{ = \frac{  \cancel 2 ^{1}  }{    \cancel4 ^{2} }}}

 \\ { \green{ \boxed{ \sf{ = \frac{ 1}{    2 }}}}}

So, Slope of the line Perpendicular to line AB is :-

Here m is 1/2.

 {\large{ \sf{ \boxed{ = -\frac{1}{m}}}}}

 \\ { \sf{ = - \frac{1}{  \frac{ 1}{2}}}}

 \\ { \sf{ = -\frac{1×2}{1}}}

 \\ { \color{green}{ \boxed{ \sf{ = -2}}}}

Answered by Anonymous
161

Step-by-step explanation:

Given :

  • The slope of the line perpendicular to the line AB, if A is (3, 3) and B is (-1, 1)

To Find :

  • Find the slope of the line perpendicular

Solution :

Here the coordinates of the given two points A & B are

( 3 , 3 ) & ( -1 , 1 ) respectively

So the slope of the line AB joining the points A and B is

 \displaystyle \sf{m =  \frac{3 - 1}{3 + 1} }

: \implies \displaystyle \sf{m =  \frac{2}{4} }

 :\implies \displaystyle \sf{m =   \frac{1}{2}  }

Let M be the the slope of the line perpendicular to the line AB

Then by the condition of perpendicularity

\displaystyle \sf{m \times  M=   - 1 }

: \implies \displaystyle \sf{M=   -  \frac{1}{m}  }

 :\implies \displaystyle \sf{M=   - 2  }

FINAL ANSWER

The slope of the line perpendicular to the line AB, if A is (3, 3) and B is (-1, 1) is - 2

━━━━━━━━━━━━━━━━

Similar questions