Math, asked by abhijith2008, 2 months ago

find the slope of the tangent to the curve y=5x^2 at (-1,5)​

Answers

Answered by MaheswariS
25

\textbf{Given:}

\textsf{Curve is}\;\mathsf{y=5\,x^2}

\textbf{To find:}

\textsf{Slope of tangent to the given curve at (-1,5)}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{y=5\,x^2}

\textsf{Differentiate with respect to 'x'}

\mathsf{\dfrac{dy}{dx}=5(2x)}

\mathsf{\dfrac{dy}{dx}=10x}

\mathsf{Slope\;of\;tangent\;to\;the\;curve}

\mathsf{=\left(\dfrac{dy}{dx}\right)_{(-1,5)}}

\mathsf{=10(-1)}

\mathsf{=-10}

\implies\boxed{\mathsf{Slope\;of\;tangent\;to\;the\;curve=-10}}

\textbf{Find more:}

Equation of the tangent to the curve y = 1-e^-x/2 at the point where the curve cuts y axis is

https://brainly.in/question/6188805

Answered by saiteja65
0

Answer:

-10

qorbroebeosbwh2orhrofbaowbrorf

Attachments:
Similar questions