Math, asked by papafairy143, 19 days ago

Find the smallest area bounded between the curve x^2 + y^2 = 1 and x + y = 1

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given curves are

\rm \:  {x}^{2} +  {y}^{2}  = 1 \\

and

\rm \: x + y = 1 \\

Step :- 1 Point of intersection of two curves

As, it is given that,

\rm \: x + y = 1 \\

\rm\implies \:y = 1 - x \\

On substituting the value of y in second curve, we get

\rm \:  {x}^{2} +  {(1 - x)}^{2} = 1 \\

\rm \:  {x}^{2} +  {x}^{2}  + 1 - 2x = 1 \\

\rm \:  2{x}^{2} - 2x = 0 \\

\rm \: 2x(x - 1) = 0 \\

\rm\implies \:x = 0 \:  \: or \:  \: x = 1 \\

Hence, the point of intersection of two curves are as

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 1 \\ \\ \sf 1 & \sf 0 \end{array}} \\ \end{gathered} \\

Step :- 2 Curve Sketching

\rm \:  {x}^{2} +  {y}^{2}  = 1 \\

represents the equation of circle having center (0, 0) and radius 1 unit.

and

x + y = 1 represents the equation of line which passes through the point (0, 1) and (1, 0).

[ See the graph in attachment ]

Step :- 3 Required Area

As we have to find the smallest area bounded between these two curves, so shaded region represents the required area.

So, required area between the two curves is

\rm \:  =  \: \displaystyle\int_0^1\rm (y_{circle} \:  -  \: y_{line} \: ) \: dx \\

\rm \:  =  \: \displaystyle\int_0^1\rm ( \sqrt{1 -  {x}^{2} }  - (1 - x) \: ) \: dx \\

\rm \:  =  \: \bigg[\dfrac{x}{2} \sqrt{1 -  {x}^{2}} +  \dfrac{1}{2} {sin}^{ - 1}x - x +  \dfrac{ {x}^{2} }{2}   \bigg]_0^1 \\

\rm \:  =  \: \bigg[0 +  \dfrac{1}{2} {sin}^{ - 1}1 - 1 +  \dfrac{ {1}^{2} }{2}   \bigg] \\

\rm \:  =  \:  \dfrac{1}{2}  \times \dfrac{\pi}{2}  - 1 +  \dfrac{ 1 }{2} \\

\rm \:  =  \:   \dfrac{\pi}{4}  -  \dfrac{ 1 }{2} \\

\rm \:  =  \:   \dfrac{\pi - 2}{4}  \: square \: units \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

\boxed{\tt{ \displaystyle\int\rm  \sqrt{ {a}^{2}  -  {x}^{2} } \: dx =   \frac{x}{2} \sqrt{ {a}^{2} -  {x}^{2}} +  \frac{ {a}^{2} }{2} {sin}^{ - 1} \frac{x}{a} + c }} \\

\boxed{\tt{ \displaystyle\int\rm  {x}^{n}dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1} + c \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Attachments:
Similar questions