find the smallest number by which 2560 must be multiplied so that the product becomes a perfect cube.
Answers
Answered by
4
hey mate !
Here is your answer »»»»»»»»»»
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
••••••••••••••••••••••••••••••••••••••••••••••••••
Step 1— Express 2560 as a product of its prime factors.
Step 2— Pair them
2560 = (2 × 2 × 2) × (2 × 2 × 2) × 2 × 2 × 5
Step 3— Since 2 & 5 are not in triplets, we need to multiply 2560 with 2 × 5 × 5 i.e. 50
Therefore, 50 is the smallest number by which 2560 must be multiplied in order to get a perfect cube.
••••••••••••••••••••••••••••••••••••••••••••••••••
Hope this helps
@PoojaBBSR
Here is your answer »»»»»»»»»»
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
••••••••••••••••••••••••••••••••••••••••••••••••••
Step 1— Express 2560 as a product of its prime factors.
Step 2— Pair them
2560 = (2 × 2 × 2) × (2 × 2 × 2) × 2 × 2 × 5
Step 3— Since 2 & 5 are not in triplets, we need to multiply 2560 with 2 × 5 × 5 i.e. 50
Therefore, 50 is the smallest number by which 2560 must be multiplied in order to get a perfect cube.
••••••••••••••••••••••••••••••••••••••••••••••••••
Hope this helps
@PoojaBBSR
Similar questions