find the smallest number by which 6192 must be multiplied so that product is a perfect square.
Answers
Let first find the prime factorization of 6192.
Hence,
Prime factorization of 6192 is
In order to make it a perfect square, we need to complete the pairs.
So, to make 6192 a perfect square, it should be multiplied by 43.
So, required number is 6192 × 43 = 266256
and
Additional Information :-
Question : -
Find the smallest number by which 6336 must be divided so that product is a perfect square.
Answer :-
Let us first find the prime factorization of 6336.
Hence,
Prime factorization of 6336 is
In order to make it a perfect square, we need to complete the pairs.
So, to make 6336 a perfect square, it should be divided by 11.
So, required number is 6336 ÷ 11 = 576
and
\large\underline{\sf{Solution-}}
Solution−
Let first find the prime factorization of 6192.
\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:6192 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:3096 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:1548\:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:774 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:387 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:129 \:\:}} \\ {\underline{\sf{43}}}& \underline{\sf{\:\:43 \:\:}} \\ \underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}
2
2
2
2
3
3
43
6192
3096
1548
774
387
129
43
1
Hence,
Prime factorization of 6192 is
\rm :\longmapsto\:6192 = \underbrace{2 \times 2} \times \underbrace{2 \times 2} \times \underbrace{3 \times 3} \times 43:⟼6192=
2×2
×
2×2
×
3×3
×43
In order to make it a perfect square, we need to complete the pairs.
So, to make 6192 a perfect square, it should be multiplied by 43.
So, required number is 6192 × 43 = 266256
and
\rm :\longmapsto\: \sqrt{266256} = 516:⟼
266256
=516
Additional Information :-
Question : -
Find the smallest number by which 6336 must be divided so that product is a perfect square.
Answer :-
Let us first find the prime factorization of 6336.
\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:6336 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:3168 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:1584\:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:792 \:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:396 \:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:198 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:99 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:33 \:\:}} \\ {\underline{\sf{11}}}& \underline{\sf{\:\:11 \:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}
2
2
2
2
2
2
3
3
11
6336
3168
1584
792
396
198
99
33
11
1
Hence,
Prime factorization of 6336 is
\rm :\longmapsto\:6336 = \underbrace{2 \times 2} \times \underbrace{2 \times 2} \times\underbrace{2 \times 2} \times \underbrace{3 \times 3} \times 43:⟼6336=
2×2
×
2×2
×
2×2
×
3×3
×43
In order to make it a perfect square, we need to complete the pairs.
So, to make 6336 a perfect square, it should be divided by 11.
So, required number is 6336 ÷ 11 = 576
and
\rm :\longmapsto\: \sqrt{576} = 24:⟼
576
=24