Math, asked by ahamgautam8, 2 months ago

Find the smallest number by which 6336 must be divided to obtain a perfect square. Also, find the square root of the perfect square so obtained.​

Answers

Answered by mathdude500
26

\large\underline{\sf{Solution-}}

Let first find the prime factorization of 6336

\red{\bf :\longmapsto\:Prime \: factorization \: of \: 6336}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:6336 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:3168 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:1584\:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:792 \:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:396 \:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\:\:198 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:99 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:33 \:\:}} \\ {\underline{\sf{11}}}& \underline{\sf{\:\:11 \:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

\rm :\longmapsto\:6336 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 11

\rm :\longmapsto\:6336 =  {2}^{2} \times  {2}^{2}  \times  {2}^{2}  \times  {3}^{2}   \times 11

So, in order to obtain a perfect square, 6336 should be divided by 11.

So,

Smallest number is 11, by which 6336 must be divided to obtain a perfect square.

So, required number = 576

So,

\rm :\longmapsto\:576 =  {2}^{2}  \times  {2}^{2}  \times  {2}^{2}  \times  {3}^{2}

\bf\implies \: \sqrt{576}

 \rm \:=  \: \:\sqrt{ {2}^{2}  \times  {2}^{2}  \times  {2}^{2}  \times  {3}^{2} }

 \rm \:=  \: \: 2 \times 2 \times 2 \times 3

 \rm \:=  \: \:24

\bf\implies \: \sqrt{576}  = 24

Answered by officer169
3

Answer:

pls mark me brainly

Step-by-step explanation:

Answer. So, in order to obtain a perfect square, 6336 should be divided by 11. So, Smallest number is 11, by which 6336 must be divided to obtain a perfect square.

Similar questions