Find the smallest number by which each of the following numbers should be divided so that the question may be a perfect square
Answers
Answer:
Hence, the given number is not a perfect square. Thus, 2645 needs to be divided by 5 to become a perfect square. Thus, the required smallest whole number by which it should be divided so as to get a perfect square number is 5 and the square root is √529= 23.
Step-by-step explanation:
Question 5: For each of the following numbers, find the smallest whole number by which it should be multiplied so as to get a perfect square number. Also find the square root of the square number so obtained.
(i) 252
Answer: By prime factorisation we get,
252 = 2 x 2 x 3 x 3 x 7
Here, 2 and 3 are in pairs but 7 needs a pair. Thus, 7 can become pair after multiplying 252 with 7.
So, 252 will become a perfect square when multiplied by 7.
Thus, Answer = 7
(ii) 180
Answer: By prime factorisation, we get, 180 = 3 x 3 x 2 x 2 x 5
Here, 3 and 2 are in pair but 5 needs a pair to make 180 a perfect square.
180 needs to be multiplied by 5 to become a perfect square.
Thus, Answer = 5
(iii) 1008
Answer: By prime factorisation of 1008, we get
1008 = 2 x 2 x 2 x 2 x 3 x 3 x 7
Here, 2 and 3 are in pair, but 7 needs a pair to make 1008 a perfect square.
Thus, 1008 needs to be multiplied by 7 to become a perfect square
Hence, Answer = 7
(iv) 2028
Answer: By prime factorisation of 2028, we get
2028 = 2 x 2 x 3 x 13 x 13
Here, 2 and 13 are in pair, but 3 needs a pair to make 2028 a perfect square.
Thus, 2028 needs to be multiplied by 3 to become a perfect square.
Hence, Answer = 3
thank you