Math, asked by rg8780461, 8 months ago


Find the smallest number which when divided by 15, 25 and 30 leaves 8 as the remainder in each case​

Answers

Answered by mysticd
16

 First \:we \: have \: to \:find \: LCM \: of

 15, 25 \:and \: 30 , we \:get

5 | 15 ,25 ,30

_____________

3 |3 , 5 , 6

_____________

*** 1 , 5 , 2

LCM of 15,25 and 30 = 5 × 3 × 5 × 2

= 150

Required reminder = 8

\red{ The \: smallest \: number \: which \:when}

 \red{divided \:by \: 15, 25 \:and \:30 \: leave \:8}

 \red{as \:the \: Remainder \: in \:each \:case}

 \blue {= LCM( 15,25,30) + Remainder }

 = 150 + 8

 \green{ = 158}

•••♪

Answered by Anonymous
289

\huge\bf\underline\red{Question :}

\sf\green{Find \ the \ smallest \  number \  which  \ when}

\sf\green{divided \ by \ 15, \ 25 \ and \ 30 \ leaves \ 8 \ as \ the }

\sf\green{remainder \ in \ each \ case}

\huge\bf\underline\orange{Solution :}

\sf\blue{First \:we \: have \: to \:find \: LCM \: of \: 15,\: 25 \:and \: 30 ,\: we \:get }

\sf\begin{array}{r | l}</p><p></p><p>5 &amp;  15,25,30 \\</p><p></p><p></p><p></p><p>\cline{2-2} 3 &amp; 3,5,6 \\</p><p></p><p></p><p>\cline{2-2} &amp; 1,5,2</p><p></p><p>\end{array}

\sf\purple{LCM \ of \ 15, \ 25 \ and \ 30 \ =  \ 5 × 3 × 5 × 2 \ =  \ 150}

\sf\blue{Required \ reminder \ = \ 8}

\sf\purple{ The \: smallest \: number \: which \:is \:divided \:by \: 15, 25 \:and \:30 \: leave \:8}

 \sf\blue{As \:the \: Remainder \: in \:each \:case}

 \sf\purple {\longrightarrow\:\:\:\ LCM \ ( 15,25,30) \  + \  Remainder }

\sf\blue{ \longrightarrow\:\:\: \ 150 + 8}

 \sf\purple{ \longrightarrow\:\:\:\ 158}

Similar questions