Math, asked by nisharajesh95, 7 months ago

find the smallest square number that must be divisible by each of the number 6, 9 and 15​

Answers

Answered by llxdevilgirlxll
4

\huge \bf \mathbb \ {Answer}

 \bf \: smaller  \bf \: square \bf \: number\bf \: divisible \bf \: by  \bf 6, \bf9, \bf \:1 5 \bf \: = \bf \: L.C.M \bf \: of \bf \: 6, \bf \: 9, \bf \: 15. \qquad  \bf or   \bf \: multiple  \bf \: of \bf \: L.C.M

 \bf \: Finding \:  L.C.M  \: of  \: 6, 9,1 5

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{array}{r | l}2 &6,9,15\: \: \\3&3,9 ,15\: \: \\ 3&1,3,5 \: \: \\ 5& \: 1,1,5\: \: \\&1 ,1,1 \: \: \: \\\: \: \: \: \ \: \end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

\bf L.C.M \:of 6,9,15 = 2×3×3×5

 \bf \: L.C.M \:  of \:  6,9,15 = 2,3,3,5

 \:  \:  \:  \:  \:  \:  \qquad \:   \qquad \qquad \:  \bf \: = 90

 \bf \: Now  \: checking  \: if  \: 90 \:  is \:  a \:  perfect \:  sqaure \:  or  \: not

 \bf \: Checking  \: if \:  90 \:  is  \: a \:   \: perfect  \: square \:  number.  \: </p><p>

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{array}{r | l}2 &amp;90\: \: \\3 &amp;45\: \: \\ 3&amp;15 \: \: \\ 5&amp; \: 5\: \: \\&amp;1 \: \: \: \\\: \: \: \: \ \: \end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

 \bf \: 90 \:  =  \: 2 \times \underline{ 3 \times 3} \times 5

 \bf \: Since \:  2 \:  and  \: \: 5 \:  do  \: not \:  occur \:  in \:  pairs

 \bf \:  \therefore \: 90 \: is \: not \: a \: perfect \: square \:

 \bf \: so , \:  We  \: Multiply \:  by  \: 2 \:  and  \: 5  \: to  \: make \:  pairs </p><p>

 \bf \:  \: so ,  \: our \:  multiply \:  Becomes </p><p>

 \bf \: 90 \times 2 \times 5 = 2 \times 3 \times 3 \times 5 \times 2 \times 5

 \bf \: 900 \:  =    \:  \underline{2 \times 2} \times \underline{ 3 \times 3} \times \underline{ 5 \times 5}

 \bf \: Now ,  \: it  \: becomes \:  a  \: perfect  \: sqaure  \:

 \bf \: Thus \:  required \:  number  \: is  \: 900

Answered by Mysteryboy01
1

\huge\fbox \red{✔Que} {\colorbox{crimson}{est}}\fbox\red{ion✔}

The Question is Give below 

\huge\color{Red}\boxed{\colorbox{black}{♡Answer ♡}}

The Answer is Attachment

Attachments:
Similar questions