Math, asked by aadya3o, 1 year ago

find the sol. of pair of equation 3/x+8/y=-1 ;1/x-2/y=2.............​.

Answers

Answered by luckyvenkat256
1

Answer:

3/x+8/y=-1............(1)

1/x-2/y=2..............(2)

let

1/x=a;1/y=b

3a+8b=-1............[3]

a-2b=2................[4]

(4)*3

3a+8b=-1

3a-6b=+6

(-) + -

--------------

14b=-7

b=-7/14

b=-1/2

sub(b=-1/2)in[4]

a-2*1/2=2

a-1=2

a=2+1

a=3

a=1/x=3

x=1/3

b=1/y

1/y=-1/2

y=-2

Answered by Anonymous
3

SOLUTION:-

Given:

3/x + 8/y= -1

1/x - 2/y= 2

Assume 1/x= R & 1/y= M

Therefore,

3R + 8M= -1.............(1)

R - 2M= 2.................(2)

Using substitution Method:

From equation (1), we get;

=) 3R + 8M= -1

=) 3R= -1 - 8M

=) R= -1-8M/3............(3)

So,

Putting the value of R in equation (2), we get;

 =  &gt;   \frac{ - 1 - 8</u></strong><strong><u>M</u></strong><strong><u>}{3}  - 2</u></strong><strong><u>M</u></strong><strong><u>= 2 \\  \\  =  &gt;  - 1 - 8</u></strong><strong><u>M</u></strong><strong><u> - 6</u></strong><strong><u>M</u></strong><strong><u> = 6 \\  \\  =  &gt;  - 1 - 14</u></strong><strong><u>M</u></strong><strong><u> = 6 \\  \\  =  &gt; - 14</u></strong><strong><u>M</u></strong><strong><u> =  6 + 1 \\  \\  =  &gt;  - 14</u></strong><strong><u>M</u></strong><strong><u> = 7 \\  \\  =  &gt; </u></strong><strong><u>M</u></strong><strong><u> =   - \frac{7}{14}  \\  \\  =  &gt; </u></strong><strong><u>M</u></strong><strong><u> =   - \frac{1}{2}

Now,

Putting the value of M in equation (3), we get;

 =  &gt; R =  \frac{ - 1 - 8( -  \frac{ 1}{2}) }{3}  \\  \\  =  &gt; R =  \frac{ - 1 +  \frac{8}{2} }{3}  \\  \\  =  &gt; R =  \frac{  \frac{ - 2 + 8}{2} }{3}  \\  \\  =  &gt; R =  \frac{ \frac{6}{2} }{3}  \\  \\  =  &gt; R =  \frac{3}{3}  \\  \\  =  &gt; R = 1

Therefore,

 =  &gt;  \frac{1}{x}  = R \\  \\  =  &gt;  \frac{1}{x}  = 1 \\  \\  =  &gt; x = 1

&

 =  &gt;  \frac{1}{y}  = M \\  \\  =  &gt;  \frac{1}{y}  =  -  \frac{1}{2}  \\  \\  =  &gt; y =  - 2

Hope it helps ☺️

Similar questions