Math, asked by tanu7516, 1 year ago

find the solution :- 2tan theta - cot theta +1 =0​

Answers

Answered by Anonymous
17

SOLUTION

 =  > 2tan \theta - cot \theta =  - 1 \\  =  > 2tan \theta -  \frac{1}{tan \theta}  =  - 1 \\  =  > let \theta = t \\  =  > 2t -  \frac{1}{t}  =  - 1 \\  =  >  \frac{2 {t}^{2} - 1 }{t}  =  - 1 \\  =  > 2 {t}^{2}  - 1 =  - t \\  =  > 2 {t}^{2}  + t - 1 = 0 \\  =  > 2 {t}^{2}  + 2t - t - 1 = 0 \\  =  > 2t(t  + 1) - 1(t + 1) = 0 \\  =  > ( t + 1)(2t - 1) = 0 \\  =  > t =  - 1 \:  \:  \:  \:  \: o r \:  \:  \: t = 2t = 1 \\  =  > t =  - 1 \:  \:  \: or \:  \:  \:  \: t =  \frac{1}{2}  \\  \\  =  > tan \theta =  - 1 \: or \: tan  \theta =  \frac{1}{2}  \\  =  > tan \theta =  - tan \frac{\pi}{4}  \:  \: or \:  \: tan \theta = tan(tan {}^{ - 1} ( \frac{1}{2} )) \\  =  > tan \theta = tan(\pi -  \frac{\pi}{4} ) \:  \: or \:  \: tan \theta = tan( {tan}^{ - 1} ( \frac{1}{2} )) \\  =  > tan \theta = tan( \frac{3\pi }{4} ) \:  \: or \:  \: tan \theta = tan(tan {}^{ - 1} ( \frac{1}{2} ))

Use general solution for tan theta = tan alpha, theta= + alpha

=) Theta= +3π/4 or theta= +tan^-1

(1/2)

hope it helps ☺️

Similar questions