Math, asked by alok4982, 11 months ago

find the solution common to both inequalities
 \frac{ ({x - 1})^{3} {( {x}^{2} + 3x + 2 })^{5} |x + 4|   }{ {( {x}^{2} + 4x + 4 })^{2} }  < 0 \: and \: 1 <  |x - 3|  < 5

Answers

Answered by BrainlyConqueror0901
116

Answer:

common solution=(-1,1)✔✔

Step-by-step explanation:

\huge{\boxed{\sf{SOLUTION-}}}

\frac{ ({x - 1})^{3} {( {x}^{2} + 3x + 2 })^{5} |x + 4| }{ {( {x}^{2} + 4x + 4 })^{2} } < 0 \\  = ) \frac{ {(x - 1})^{3}( {x + 2})^{2}  ({x + 1})^{2} |x + 4|   }{ ({ ({x + 2})^{2} })^{7} }  \\   NOTE:\:  \\THE\:FACTOR \:HAVING \\ODD \:POWER \:CAN\: BE \:TAKEN\\AS \:A\:POWER\:1\:AND\:THE\\FACTORS\:HAVING\\EVEN\:POWER\\CAN\:BE\:EXCLUDED\:FROM\:THE\:QUESTION\\HAVING\:MODULUS\\ALSO\:CAN\:BE\:EXCLUDED\\BECAUSE\:THEY\:DO\:NOT\:PARTICULATE\\IN-CHANGING\:THE\:SIGN\:INEQUALITY\\AGAIN,\\(x - 1)(x  + 2)(x + 1) < 0 \:  \:  \:  \:  \: ( |x + 4| not = 0) \\ x( -  \infty , - 2)u( - 1,1) \: and \: 1 <  |x - 3|  < 5 \\  = )1 < x - 3 < 5 \: or \:  - 5 <  x - 3  <  - 1 \\  = )4 < x < 8 \: or \:  - 2 < x < 2 \\ hence \: common \: solution \: is \: ( - 1,1)

Similar questions