Math, asked by rabbit123, 9 months ago

find the solution for the following

Attachments:

Answers

Answered by ItzAditt007
3

AnswEr:-

Your Answer is:-

  • u = 5.
  • v = 7.

ExplanaTion:-

Given equations:-

\tt\longrightarrow \dfrac{45}{u}  +  \dfrac{7}{v}  = 10... \: eq(1) \\  \\ \tt\longrightarrow \frac{15}{u}  +  \frac{14}{v}  = 5... \: eq(2)

To Find:-

  • The value of u and v.

So,

  \\ \rm \bigstar  \:  \: Let \:  \:  \dfrac{1}{u}  \: \:  be \:  \: x \:  \: and \:  \:  \dfrac{1}{v}  \:  \: be \:  \: y. \\  \\  \sf { \underline{ \underline{ \bullet \:  \: So \:  \: by \:  \: putting \:  \: the \:  \: value \:  \: of \:  \:  \frac{1}{u}  \:  \: and \:  \:  \frac{1}{v }  \:  \: we \:  \: get:-}}}\\

 \\ \tt\leadsto45x + 7y = 10... \: eq(3) \\  \\ \tt\leadsto15x + 14y = 5... \: eq(4)

\\ \\ \sf{ \underline{ \underline{ \bullet \:  \: by \:  \: multiplying \:  \: eq(3) \:  \: by \:  \: 2  \:  \: we \:  \: get:-}}}

 \\ \\ \tt\leadsto2(45x + 7y = 10.) \\  \\ \tt\leadsto90x + 14y = 20... \: eq(5)

 \\ \\ \sf { \underline{ \underline{ \bullet\:  \: by \:  \: subtracting \:  \: eq(4) \:  \: from \:  \: eq(5) \: \:  we \:  \: get:-}}}\\

 \\ \tt\mapsto(90x + 14y) - (15x + 14y) = 20 - 5. \\  \\ \tt\mapsto90x  \:  \cancel{+ 14y } \: - 15x \:  \cancel{ - 14y} = 15. \\  \\  \rm(by \:  \: op e n ing \:  \: brackets). \\  \\ \tt\mapsto90x - 15x = 15. \\  \\ \tt\mapsto75x = 15. \\  \\ \tt\mapsto x =  \cancel \frac{15}{75} . \\  \\ \tt\mapsto{ \underline{ \underline{x =  \frac{1}{5}.}}}\\

 \\  \sf { \underline{ \underline{ \bullet \:  \: So \:  \: by \:  \: putting \:  \: the \:  \: value \:  \: of \:  \:  x \:  \:in \:  \:  eq(4)  \:  \: we \:  \: get:-}}}\\

 \\ \tt\mapsto15x + 14y = 5. \\  \\ \tt\mapsto \cancel{15} \frac{1}{ \cancel{5}}  + 14y = 5. \\  \\ \tt\mapsto3 + 14y = 5. \\  \\ \tt\mapsto14y = 5 - 3. \\  \\ \tt\mapsto14y = 2. \\  \\ \tt\mapsto y =  \cancel \frac{2}{14}  . \\  \\ \tt\mapsto{ \underline{ \underline{ y =  \frac{1}{7} .}}} \\ \\

\rm\therefore The Value Of x and y is \tt\dfrac{1}{5}\:\:And\:\: \dfrac{1}{7} Respectively.

But,

\\ \tt\longrightarrow x = \dfrac{1}{u}.\\ \\ \tt\longrightarrow \dfrac{\cancel{1}}{5} = \dfrac{\cancel1}{u}.\\ \\ \longrightarrow{\boxed{\underline {\tt u = 5.}}}\\ \\ \rm Also,\\ \\\tt\longrightarrow y = \dfrac{1}{v}\\ \\  \tt\longrightarrow \dfrac{\cancel1}{7} = \dfrac{\cancel1}{v}\\ \\ \longrightarrow{\boxed{\underline{\tt v = 7.}}}\\

Similar questions