Math, asked by balajiraod2002, 11 months ago

find the solution for the image​

Attachments:

Answers

Answered by kaushik05
42

  \huge\mathfrak{solution}

To find:

 \int \:  \frac{ \sin 3x}{ \sin x}  dx \\

As we know that :

 \star \boxed{ \bold{\sin 3x = 3 \sin x - 4 { \sin}^{3} x}}

 \implies \int \:  \frac{ \sin 3x}{ \sin x} dx \\  \\  \implies \int  \frac{3 \sin x - 4 { \sin}^{3}x }{ \sin x} dx \\  \\  \implies \int \:  \frac{3 \sin x}{ \sin x} dx -  \int \:  \frac{4 { \sin}^{3}x }{ \sin x} dx \\  \\  \implies \int \: 3dx \:  -  \int \: 4 { \sin}^{2} x \: dx \\  \\  \implies  \: 3\int \: dx - 4 \int \:  { \sin }^{2} dx

 \star \boxed{ \bold{  { \sin}^{2} x =  \frac{1 -  \cos \: 2x}{2}}}  \\

 \implies \: 3 \int \: dx - 4 \int \:  \frac{1 -  \cos 2x}{2} dx \\  \\ \implies   \: 3\int dx - 2 \int \: (1 -  \cos \: 2x )\: dx \\  \\  \implies3 \int \: dx - 2 \int \: dx + 2 \int \cos 2x \: dx \\  \\  \implies \:  3x - 2x + 2  \frac{ \sin 2x}{2}  \\  \\  \implies \: x +  \sin 2x \:  + c \\

Formula:

 \star \bold{ \int \cos \: ax \: dx =   \frac{ \sin ax}{a}  + c} \\

Answered by parry8016
4

Step-by-step explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions