Find the solution, if exists for the pair 9x – 4y = 2000 and 7x – 3y = 2000 by any method.
Answers
Answer:
x = 2000
y = 4000
Step-by-step explanation:
Given pair of linear equations
9x - 4y = 2000 ---eq(1)
7x - 3y = 2000---eq(2)
LCM of coefficients of y i.e 4 and 3 is 12
So Multiply eq(1) with 3 and eq(2) with 4
After multipliplying pair of linear equation we have
27x - 12y = 6000 ---eq(3)
28x - 12y = 8000 ---eq(4)
Subtrating eq(2) from eq(1)
⇒ 27x - 12y - (28x - 12y) = 6000 - 8000
⇒ 27x - 12y - 28x + 12y = - 2000
⇒ - x = - 2000
⇒ x = 2000
Substitute x = 2000 in eq(1)
⇒ 9x - 4y = 2000
⇒ 9(2000) - 4y = 2000
⇒ 18000 - 4y = 2000
⇒ 18000 - 2000 = 4y
⇒ 16000 = 4y
⇒ 16000/4 = y
⇒ 4000 = y
⇒ y = 4000
∴ x = 2000 and y = 4000
Note :-
The method used to solve this question is ELIMINATION METHOD.
Answer:
x = 2000
y = 4000
Step-by-step explanation:
Given pair of linear equations
9x - 4y = 2000 ---eq(1)
7x - 3y = 2000---eq(2)
LCM of coefficients of y i.e 4 and 3 is 12
So Multiply eq(1) with 3 and eq(2) with 4
After multipliplying pair of linear equation we have
27x - 12y = 6000 ---eq(3)
28x - 12y = 8000 ---eq(4)
Subtrating eq(2) from eq(1)
⇒ 27x - 12y - (28x - 12y) = 6000 - 8000
⇒ 27x - 12y - 28x + 12y = - 2000
⇒ - x = - 2000
⇒ x = 2000
Substitute x = 2000 in eq(1)
⇒ 9x - 4y = 2000
⇒ 9(2000) - 4y = 2000
⇒ 18000 - 4y = 2000
⇒ 18000 - 2000 = 4y
⇒ 16000 = 4y
⇒ 16000/4 = y
⇒ 4000 = y
⇒ y = 4000
∴ x = 2000 and y = 4000
Note :-
The method used to solve this question is ELIMINATION METHOD.