Math, asked by aryanpratapsingh798, 1 month ago

find the solution of differential equation (dy)/(dx)=(x+y+2)/2 (x+y)+3​

Answers

Answered by rishu6845
1

Step-by-step explanation:

 \dfrac{dy}{dx}  =  \dfrac{x + y + 2}{2(x + y) + 3}  \\ let  \\ \:  \: (x + y) = v \\ differentiating \: with \: respect \: to \: x \\ 1 +  \dfrac{dy}{dx}  =  \dfrac{dv}{dx}  \\  \dfrac{dy}{dx}  =  \dfrac{dv}{dx}  - 1 \\ now \\  \dfrac{dv}{dx}  - 1 =  \dfrac{v + 2}{2v + 3}  \\  \dfrac{dv}{dx}  =  \dfrac{v + 2}{2v + 3}  + 1 \\  \dfrac{dv}{dx}  =  \dfrac{3v + 5}{2v + 3}  \\  \displaystyle \int  \dfrac{2v + 3}{3v + 5} \: dv =  \displaystyle \int dx \:  +  \: c \\ 2 \displaystyle \int \dfrac{v +  \frac{3}{2} }{3v + 5}  \: dv =  \: x \:  +  \: c \\  \dfrac{2}{3}  \displaystyle \int \:  \dfrac{3v +  \frac{9}{2} }{3v + 5}  dv=  \: x \:  +  \: c \\  \dfrac{2}{3}  \displaystyle \int \dfrac{(3v + 5) - 5 +  \frac{9}{2} }{3v + 5} \: dv  =  \: x \:  +  \: c \\  \dfrac{2}{3}  \displaystyle \int( \:  \dfrac{3v + 5}{3v + 5}  -  \dfrac{ \frac{1}{2} }{3v + 5} ) \: dv \:  =  \: x \:  +  \: c \\  \dfrac{2}{3}  \displaystyle  \int( \: 1 -  \dfrac{1}{2 \: (3v + 5)} ) \: dv \:  = x \:  +  \: c \\  \dfrac{2}{3} ( \: v) -  \frac{2}{3}  \:  \:  \dfrac{1}{2}   \:  \dfrac{1}{3} \: log \: (3v + 5) = x + c \\  \dfrac{2}{3} (x + y)  -  \dfrac{1}{9}  \: log (3 \: (x + y) + 5) = x + c \\  \dfrac{2}{3} (x + y) -  \dfrac{1}{9} log(3x + 3y + 5) = x + c

Similar questions